
LATEXML The Manual
A LATEX to XML Converter;

0.7.0

Bruce R. Miller

June 19, 2009

ii

Contents

Contents iii

1 Introduction 1

2 Using LATEXML 3
2.1 Conversion . 4
2.2 Postprocessing . 5
2.3 Splitting . 8
2.4 Sites . 8
2.5 Individual Formula . 9

3 Architecture 11
3.1 latexml architecture . 11

3.1.1 Digestion . 12
3.1.2 Construction . 13
3.1.3 Rewriting . 13
3.1.4 MathParsing . 13
3.1.5 Serialization . 13

3.2 latexmlpost architecture . 14

4 Customization 15
4.1 latexml Customization . 15

4.1.1 Expansion . 16
4.1.2 Digestion . 17
4.1.3 Construction . 19
4.1.4 Document Model . 21
4.1.5 Rewriting . 22
4.1.6 Packages and Options . 22
4.1.7 Miscellaneous . 23

4.2 latexmlpost Customization . 23
4.2.1 XSLT . 24
4.2.2 CSS . 24

iii

iv CONTENTS

5 Mathematics 27
5.1 Math Details . 28

5.1.1 Internal Math Representation 28
5.1.2 Grammatical Roles . 30

6 ToDo 33

A Commands 37

B Bindings 51

C Modules 53

D Utility Modules 111

E Postprocessing Modules 115

F Schema 117

G Error Codes 155

Index 157

Chapter 1

Introduction

For many, LATEX is the prefered format for document authoring, particularly those in-
volving significant mathematical content and where quality typesetting is desired. On
the other hand, content-oriented XML is an extremely useful representation for doc-
uments, allowing them to be used, and reused, for a variety of purposes, not least,
presentation on the Web. Yet, the style and intent of LATEX markup, as compared to
XML markup, not to mention its programmability, presents difficulties in converting
documents from the former format to the latter. Perhaps ironically, these difficulties
can be particularly large for mathematical material, where there is a tendency for the
markup to focus on appearance rather than meaning.

The choice of LATEX for authoring, and XML for delivery were natural and uncon-
troversial choices for the Digital Library of Mathematical Functions1. Faced with the
need to perform this conversion and the lack of suitable tools to perform it, the DLMF
project proceeded to develop thier own tool, LATEXML, for this purpose.

Design Goals The idealistic goals of LATEXML are:

• Faithful emulation of TEX’s behaviour.

• Easily extensible.

• Lossless; preserving both semantic and presentation cues.

• Uses abstract LATEX-like, extensible, document type.

• Determine the semantics of mathematical content
(Good Presentation MathML, eventually Content MathML and OpenMath).

As these goals are not entirely practical, or even somewhat contradictory, they are
implicitly modified by as much as possible. Completely mimicing TEX’s, and LATEX’s,
behaviour would seem to require the sneakiest modifications to TEX, itself; redefining
LATEX’s internals does not really guarantee compatibility. “Ease of use” is, of course,

1http://dlmf.nist.gov

1

2 CHAPTER 1. INTRODUCTION

in the eye of the beholder. More significantly, few documents are likely to have com-
pletely unambiguous mathematics markup; human understanding of both the topic and
the surrounding text is needed to properly interpret any particular fragment. Thus,
rather than pretend to provide a “turn-key” solution, we expect that document-specific
declarations or tuning to be necessary to faithfully convert documents. Towards this
end, we provide a variety of means to customize the processing and declare the au-
thor’s intent. At the same time, especially for new documents, we encourage a more
logical, content-oriented markup style, over a purely presentation-oriented style.

Overview of this Manual Chapter 2 describes the usage of LATEXML, along with
common use cases and techniques. Chapter 3 describes the system architecture in some
detail. Strategies for customization and implementation of new packages is described
in Chapter 4. The special considerations for mathematics, including details of repre-
sentation and how to improve the conversion, are covered in Chapter 5. An overview
of outstanding issues and planned future improvements are given in Chapter 6.

Finally, the Appendices give detailed documentation the system components: Ap-
pendix A describes the command-line programs provided by the system; Appendices
C and D describes the core and utility Perl modules comprising the system, while Ap-
pendix E describes the postprocessing modules; Appendix F describes the XML schema
used by LATEXML; finally, Appendix G gives an overview of the warning and error mes-
sages that LATEXML may generate.

If all else fails, you can consult the source code, or the author.

Chapter 2

Using LATEXML

The main commands provided by the LATEXML system are

latexml for converting TEX and BIBTEX sources to XML.

latexmlpost for various postprocessing tasks including conversion to HTML, pro-
cessing images, conversion to MathML and so on.

The usage of these commands can be as simple as

latexml doc.tex | latexmpost --dest=doc.xhtml

to convert a single document into HTML, or as complicated as

latexml --dest=1.xml ch1
latexml --dest=2.xml ch2

...
latexml --dest=b.xml b
latexml --dest=B.xml B.bib
latexmlpost --prescan --db=my.db --bib=B.xml --dest=1.xhtml 1
latexmlpost --prescan --db=my.db --bib=B.xml --dest=2.xhtml 2

...
latexmlpost --prescan --db=my.db --bib=B.xml --dest=b.xhtml b
latexmlpost --noscan --db=my.db --bib=B.xml --dest=1.xhtml 1
latexmlpost --noscan --db=my.db --bib=B.xml --dest=2.xhtml 2

...
latexmlpost --noscan --db=my.db --bib=B.xml --dest=b.xhtml b

to convert a whole set of documents, including a bibliography, into a complete inter-
connected site.

How best to use the commands depends, of course, on what you are trying to
achieve. In the next section, we’ll describe the use of latexml, which performs the
conversion to XMLṪhe following sections consider a sequence of successively more
complicated postprocessing situations, using latexmlpost, by which one or more
TEX sources can be converted into one or more web documents or a complete site.

Additionally, there is a convenience command latexmlmath for converting in-
dividual formula into various formats.

3

4 CHAPTER 2. USING LATEXML

2.1 Basic XML Conversion

The command

latexml options --destination=doc.xml doc

converts the TEX document doc.tex, or standard input if - is used in place of the file-
name, to XML. It loads any required definition bindings (see below), reads, tokenizes,
expands and digests the document creating an XML structure. It then performs some
document rewriting, parses the mathematical content and writes the result, in this case,
to doc.xml; if no --destination is suppplied, it writes the result to standard out-
put. For details on the processing, see Chapter 3, and Chapter 5 for more information
about math parsing.

BIBTEX processing If the source file has an explicit extension of .bib, or if the
--bibtex option is used, the source will be treated as a BIBTEX database.

Note that the timing is different than with BIBTEX and LATEX. Normally, BIBTEX
simply selects and formats a subset of the bibliographic entries according to the .aux
file; all TEX expansion and processing is carried out only when the result is included
in the main LATEX document. In contrast, latexml processes and expands the entire
bibliography when it is converted to XML; the selection of entries is done during post-
processing. One implication is that latexml does not know about packages included
in the main document; if the bibliography uses macros defined in such packages, the
packages must be explicitly specified using the --preload option.

Useful Options The number and detail of progress and debugging messages printed
during processing can be controlled using

--verbose or --quiet

They can be repeated to get even more or fewer details.
Directories to search (in addition to the working directory) for various files can be

specified using

--path=directory

This option can be repeated.
Whenever multiple sources are being used (including multiple bibliographies), the

option

--documentid=id

should be used to provide a unique ID for the document root element. This ID is used
as the base for id’s of the child-elements within the document, so that they are unique,
as well.

See the documentation for the command latexml for less common options.

2.2. POSTPROCESSING 5

Loading Bindings Although LATEXML is reasonably adept at processing TEX macros,
it generally benefits from having its own implementation of the macros, primitives,
environments and other control sequences appearing in a document because these are
what define the mapping into XML. The LATEXML-analogue of a style or class file
we call a LATEXML-binding file, or binding for short; these files have an additional
extension .ltxml.

In fact, since style files often bypass structurally or semantically meaningful macros
by directly invoking macros internal to LATEX, LATEXML actually avoids processing style
files when a binding is unavailable. The option

--includestyles

can be used to override this behaviour and allow LATEXML to (attempt to) process raw
style files. [A more selective, per-file, option may be developed in the future, if there
is sufficient demand — please provide use cases.]

LATEXML always starts with the TeX.pool binding loaded, and if LATEX-specific
commands are recognized, LaTeX.pool as well. Any input directives within the
source loads the appropriate binding: \documentclass{article} or \usepackage{graphicx}
will load the bindings article.cls.ltxml or graphicx.sty.ltxml, respec-
tively; the obsolete \documentstyle{article} directive is also recognized. An
\input directive will search for files with both .tex and .sty extensions; it will
prefer a binding file if one is found, but will load and digest a .tex if no binding is
found. An \include directive (and related ones) search only for a .tex file, which
is processed and digested as usual.

There are two mechanisms for customization: a document-specific binding file
doc.latexml will be loaded, if present; the option

--preload=binding

will load the binding file binding.ltxml. The --preload option can be repeated;
both kinds of preload are loaded before document processing, and are processed in
order.

See Chapter 4 for details about what can go in these bindings; and Appendix B for
a list of bindings currently included in the distribution.

2.2 Basic Postprocessing
In the simplest situation, you have a single TEX source document from which you want
to generate a single output document. The command

latexmlpost options --destination=doc.xhtml doc

or similarly with --destination=doc.html, will carry out a set of appropriate
transformations in sequence:

• scanning of labels and ids;

• filling in the index and bibliography (if needed);

• cross-referencing;

6 CHAPTER 2. USING LATEXML

• conversion of math;

• conversion of graphics and picture environments to web format (png);

• applying an XSLT stylesheet.

The output format affects the defaults for each step and is determined by the file exten-
sion of --destination, or by the option

--format=(xhtml|html|xml)

html both math and graphics are converted to png images; the stylesheet LaTeXML-html.xslt
is used.

xhtml math is converted to Presentation MathML, other graphics are converted to im-
ages; the stylesheet LaTeXML-xhtml.xslt is used.

xml no math, graphics or XSLT conversion is carried out.

Of course, all of these conversions can be controlled or overridden by explicit options
described below. For more details about less common options, see the command doc-
umentation latexmlpost, as well as Appendix E.

Scanning The scanning step collects information about all labels, ids, indexing com-
mands, cross-references and so on, to be used in the following postprocessing stages.

Indexing An index is built from \index markup, if makeidx’s \printindex
command has been used, but this can be disabled by

--noindex

The index entries can be permuted with the option

--permutedindex

Thus \index{term a!term b} also shows up as \index{term b!term a}.
This leads to a more complete, but possibly rather silly, index, depending on how the
terms have been written.

Bibliography Bibilographic data from BibTeX can be provided with the option

--bibliography=bibfile.xml

The bibliography would have typically been produced by running

latexml --dest=bibfile.xml bibfile.bib

Note that the XML file, bibfile, is not used to directly produce an HTML-formatted bibli-
ography, rather it is used to fill in the \bibliography{..}within a TEX document.

2.2. POSTPROCESSING 7

Cross-Referencing In this stage, the scanned information is used to fill in the text
and links of cross-references within the document. The option

--urlstyle=(server|negotiated|file)

can control the format of urls with the document.

server formats urls appropriate for use from a web server. In particular, trailing
index.html are omitted. (default)

negotiated formats urls appropriate for use by a server that implements content nego-
tiation. File extensions for html and xhtml are omitted. This enables you to
set up a server that serves the appropriate format depending on the browser being
used.

file formats urls explicitly, with full filename and extension. This allows the files to be
browsed from the local filesystem.

Math Conversion Specific conversions of the mathematics can be requested using
the options

--mathimages # converts math to png images,
--presentationmathml or --pmml # creates Presentation \MathML
--contentmathml or --cmml # creates Content \MathML
--openmath or --om # creates \OpenMath

(Each of these options can also be negated if needed, eg. --nomathimages) It must
be pointed out that the Content MathML and OpenMath conversions are currently
rather experimental.

More than one of these conversions can be requested, and each will be included in
the output document. However, the option

--parallelmath

can be used to generate parallel MathML markup, provided the first conversion is either
--pmml or --cmml.

Graphics processing Conversion of graphics (eg. from the graphic(s|x) pack-
ages’ \includegraphics) can be enabled or disabled using

--graphicsimages or --nographicsimages

Similarly, the conversion of picture environments can be controlled with

--pictureimages or --nopictureimages

An experimental capability for converting the latter to SVG can be controlled by

--svg or --nosvg

8 CHAPTER 2. USING LATEXML

Stylesheet If you wish to provide your own XSLT or CSS stylesheets, the options

--stylesheet=stylesheet.xsl
--css=stylesheet.css

can be used. The --css option can be repeated to include multiple stylesheets; for
example, the distribution provides several in addition to the core.css stylesheet
which is included by default.

navbar-left.css Places a navigation bar on the left.

navbar-right.css Places a navigation bar on the left.

theme-blue.css Colors various features in a soft blue.

amsart.css A style appropriate for many journal articles.

To develop such stylesheets, a knowledge of the LATEXML document type is neces-
sary; See Appendix F.

2.3 Splitting the Output

For larger documents, it is often desirable to break the result into several interlinked
pages. This split, carried out before scanning, is requested by

--splitat=level

where level is one of chapter, section, subsection, or subsubsection.
For example, section would split the document into chapters (if any) and sections,
along with separate bibliography, index and any appendices. (See also --splitxpath
in latexml.) The removed document nodes are replaced by a Table of Contents.

The extra files are named using either the id or label of the root node of each new
page document according to

--splitnaming=(id|idrelative|label|labelrelative)

The relative foms create shorter names in subdirectories for each level of splitting. (See
also --urlstyle and --documentid in latexml.)

Additionally, the index and bibliography can be split into separate pages according
to the initial letter of entries by using the options

--splitindex and --splitbibliography

2.4 Site processing

A more complicated situation combines several TEX sources into a single interlinked
site consisting of multiple pages and a composite index and bibliography.

2.5. INDIVIDUAL FORMULA 9

Conversion First, all TEX sources must be converted to XML, using latexml. Since
every target-able element in all files to be combined must have a unique identi-
fier, it is useful to prefix each identifier with a unique value for each file. The
latexml option --documentid=id provides this.

Scanning Secondly, all XML files must be split and scanned using the command

latexmlpost --prescan --dbfile=DB --dest=i.xhtml i

where DB names a file in which to store the scanned data. Other conversions,
including writing the output file, are skipped in this prescanning step.

Pagination Finally, all XML files are cross-referenced and converted into the final for-
mat using the command

latexmlpost --noscan --dbfile=DB --dest=i.xhtml i

which skips the unnecessary scanning step.

2.5 Individual Formula
For cases where you’d just like to convert a single formula to, say, MathML, and don’t
mind the overhead, we’ve combined the pre- and post-processing into a single, handy,
command latexmlmath. For example,

latexmlmath --pmml=- \frac\b\pm\sqrt\{bˆ2-4ac\\}\2a\

will print the MathML to standard output. To convert the formula to a png image, say
quad.png, use the option --mathimage=quad.png.

10 CHAPTER 2. USING LATEXML

Chapter 3

Architecture

As has been said, LATEXML consists of two main programs: latexml responsible for
converting the TEX source into XML; and latexmlpost responsible for converting
to target formats. See Figure 3.1 for illustration.

The intention is that all semantics of the original document is preserved by latexml,
or even inferred by parsing; latexmlpost is for formatting and conversion. Depend-
ing on your needs, the LATEXML document resulting from latexml may be sufficient.
Alternatively, you may want to enhance the document by applying third party programs
before postprocessing.

3.1 latexml architecture
Like TEX, latexml is data-driven: the text and executable control sequences (ie. macros
and primitives) in the source file (and any packages loaded) direct the processing. For
LATEXML, the user exerts control over the conversion, and customizes it, by provid-
ing alternative bindings of the control sequences and packages, by declaring properties
of the desired document structure, and by defining rewrite rules to be applied to the
constructed document tree.

The top-level class, LaTeXML, manages the processing, providing several meth-
ods for converting a TEX document or string into an XML document, with varying
degrees of postprocessing and writing the document to file. It binds a State object
(to $STATE) to maintain the current state of bindings for control sequence definitions
and emulates TEX’s scoping rules. The processing is broken into the following stages

Digestion the TEX-like digestion phase which converts the input into boxes.

Construction converts the resulting boxes into an XML DOM.

Rewriting applies rewrite rules to modify the DOM.

Math Parsing parses the tokenized mathematics.

Serialization converts the XML DOM to a string, or writes to file.

11

12 CHAPTER 3. ARCHITECTURE

Figure 3.1: Flow of data through LATEXML’s digestive tract.

3.1.1 Digestion

Digestion is carried out primarily in a pull mode: The Stomach pulls expanded
Tokens from the Gullet, which itself pulls Tokens from the Mouth. The Mouth
converts characters from the plain text input into Tokens according to the current
catcodes (category codes) assigned to them (as bound in the State). The Gullet
is responsible for expanding macros, that is, control sequences currently bound to
Expandables and for parsing sequences of tokens into common core datatypes (Number,
Dimension, etc.). See 4.1.1 for how to define macros and affect expansion.

The Stomach then digests these tokens by executing Primitive control se-
quences, generally for side effect, and converting the remainder to Lists of Boxes
and Whatsits Normally, textual tokens are converted to Boxes. The main (inten-
tional) deviation of LATEXML’s digestion from that of TEX is the introduction of a new
type of definition, a Constructor, responsible for constructing XML fragments. A
control sequence bound to Constructor is digested by reading and processing its
arguments and wrapping these up in a Whatsit. Before- and after-daemons, essen-

3.1. LATEXML ARCHITECTURE 13

tially anonymous primitives, associated with the Constructor are executed before
and after digesting the Constructor arguments’ markup, which can affect the con-
text of that digestion, as well as augmenting the Whatsit with additional properties.
See 4.1.2 for how to define primitives and affect digestion.

3.1.2 Construction

Given the List of Boxes and Whatsits, we proceed to constructing an XML docu-
ment. This consists of creating an Document object, containing a libxml2 document,
XML::LibXML::Document, and having it absorb the digested material. Absorbing
a Box converts it to text content, with provision made to track and set the current font.
A Whatsit is absorbed by invoking the associated Constructor to insert an ap-
propriate XML fragment, including elements and attributes, and recursively processing
their arguments as necessary See 4.1.3 for how to define constructors.

A Model is maintained througout the digestion phase which accumulates any doc-
ument model declarations, in particular the document type (RelaxNG is preferred, but
DTD is also supported). As LATEX markup is more like SGML than XML, additional
declarations may be used (see Tag in Package) to indicate which elements may be
automatically opened or closed when needed to build a document tree that matches the
document type. As an example, a <subsection> will automaticall be closed when
a <section> is begun. Additionally, extra bits of code can be executed whenever
particularly elements are openned or closed (also specified by Tag). See 4.1.4 for how
to affect the schema.

3.1.3 Rewriting

Once the basic document is constructed, Rewrite rules are applied which can per-
form various functions. Ligatures and combining mathematics digits and letters (in
certain fonts) into composite math tokens are handled this way. Additionally, declara-
tions of the type or grammatical role of math tokens can be applied here See 4.1.5 for
how to define rewrite rules.

3.1.4 MathParsing

After rewriting, a grammar based parser is applied to the mathematical nodes in order
to infer, at least, the structure of the expressions, if not the meaning. Mathematics
parsing, and how to control it, is covered in detail in Chapter 5.

3.1.5 Serialization

Here, we simple convert the DOM into string form, and output it.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

14 CHAPTER 3. ARCHITECTURE

3.2 latexmlpost architecture
LATEXML’s postprocessor is primarily for format conversion. It operates by applying a
sequence of filters responsible for transforming or splitting documents, or their parts,
from one format to another.

Exactly which postprocessing filter modules are applied depends on the command-
line options to latexmlpost. Postprocessing filter modules are generally applied in
the following order:

Split splits the document into several ‘page’ documents, according to --split or
--splitxpath options.

Scan scans the document for all ID’s, labels and cross-references. This data may be
stored in an external database, depending on the --db option.

MakeIndex fills in the index element (due to a \printindex) with material gen-
erated by index.

MakeBibliography fills in the bibliography element (from \bibliography)
with material extracted from the file specified by the --bibilography op-
tion, for all \cite’d items.

CrossRef establishes all cross-references between documents and parts thereof, filling
in the references with appropriate text for the hyperlink.

MathImages, MathML, OpenMath performs various conversions of the internal Math
representation.

PictureImages, Graphics, SVG performs various graphics conversions.

XSLT applies an XSLT transformation to each document.

Writer writes the document to a file in the appropriate location.

See 4.2 for how to customize the postprocessing.

Chapter 4

Customization

The processsing of the LATEX document, its conversion into XML and ultimately to
XHTML or other formats can be customized in various ways, at different stages of
processing and in different levels of complexity. Depending on what you are trying
to achieve, some approaches may be easier than others: Recall Larry Wall’s adage
“There’s more than one way to do it.”

To teach LATEXML about new macros, to implement bindings for a package not yet
covered, or to modify the way TEX control sequences are converted to XML, you will
want to look at 4.1. To modify the way that XML is converted to other formats such as
HTML, see 4.2.

A particularly powerful strategy when you have control over the source documents
is to develop a semantically oriented LATEX style file, say smacros.sty, and then
provide a LATEXML binding as smacros.sty.ltxml. In the LATEX version, you may
style the terms as you like; in the LATEXML version, you could control the conversion
so as to preserve the semantics in the XML. If LATEXML’s schema is insufficient, then
you would need to extend it with your own representation; although that is beyond the
scope of the current manual, see the discussion below in 4.1.4. In such a case, you
would also need to extend the XSLT stylesheets, as discussed in 4.2.1.

4.1 latexml Customization
This layer of customization deals with modifying the way a LATEX document is trans-
formed into LATEXML’s XML. In 2.1 the loading of various bindings was described. The
facilities described in the following subsections apply in all such cases, whether used to
customize the processing of a particular document or to implement a new LATEX pack-
age. We make no attempt to be comprehensive here; please consult the documentation
for Global and Package, as well as the binding files included with the system for
more guidance.

A LATEXML binding is actually a Perl module, and as such, a familiarity with Perl is
helpful. A binding file will look something like:

use LaTeXML::Package;

15

16 CHAPTER 4. CUSTOMIZATION

use strict;

Your code here!

1;

The final ‘1’ is required; it tells Perl that the module has loaded successfully. In be-
tween, comes any Perl code you wish, along with the definitions and declarations as
described here.

Actually, familiarity with Perl is more than merely helpful, as is familiarity with
TEX and XML! When writing a binding, you will be programming with all three lan-
guages. Of course, you need to know the TEX corresponding to the macros that you
intend to implement, but sometimes it is most convenient to implement them com-
pletely, or in part, in TEX, itself (eg. using DefMacro), rather then in Perl. At the
other end, constructors (eg. using DefConstructor) are usually defined by patterns
of XML.

4.1.1 Expansion & Macros
Macros are defined using DefMacro, such as the pointless:

DefMacro(’\mybold{}’,’\textbf{#1}’);

The two arguments to DefMacro we call the prototype and the replacement. In the
prototype, the {} specifies a single normal TEX parameter. The replacement is here
a string which will be tokenized and the #1 will be replaced by the tokens of the
argument. Presumably the entire result will eventually be further expanded and or
processed.

Whereas, TEX normally uses #1, and LATEX has developed a complex scheme where
it is often necessary to peek ahead token by token to recognize optional arguments, we
have attempted to develop a suggestive, and easier to use, notation for parameters.
Thus a prototype \foo{} specifies a single normal argument, wheere \foo[]{}
would take an optional argument followed by a required one. More complex argument
prototypes can be found in Package. As in TEX, the macro’s arguments are neither
expanded nor digested until the expansion itself is further expanded or digested.

The macro’s replacement can also be Perl code, typically an anonymous sub,
which gets the current Gullet followed by the macro’s arguments as its arguments.
It must return a list of Token’s which will be used as the expansion of the macro. The
following two examples show alternative ways of writing the above macro:

DefMacro(’\mybold{}’, sub {
my($gullet,$arg)=@_;
(T_CS(’\textbf’),T_BEGIN,$arg,T_END); });

or alternatively

DefMacro(’\mybold{}’, sub {
Invocation(T_CS(’\textbf’),$_[1]); });

Functions that are useful for dealing with Tokens and writing macros include the
following:

4.1. LATEXML CUSTOMIZATION 17

• Constants for the corresponding TEX catcodes:

CC_ESCAPE, CC_BEGIN, CC_END, CC_MATH,
CC_ALIGN, CC_EOL, CC_PARAM, CC_SUPER,
CC_SUB, CC_IGNORE, CC_SPACE, CC_LETTER,
CC_OTHER, CC_ACTIVE, CC_COMMENT, CC_INVALID

• Constants for tokens with the appropriate content and catcode:

T_BEGIN, T_END, T_MATH, T_ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_CR

• T_LETTER($char), T_OTHER($char), T_ACTIVE($char), create tokens of
the appropriate catcode with the given text content.

• T_CS($cs) creates a control sequence token; the string $cs should typically
begin with the slash.

• Token($string,$catcode) creates a token with the given content and cat-
code.

• Tokens($token,...) creates a Tokens object which represents a list of Tokens.

• Tokenize($string) converts the string to a Tokens, using TEX’s standard
catcode assignments.

• TokenizeInternal($string) like Tokenize, but treating @ as a letter.

• Explode($string) converts the string to a Tokens where letter character are
given catcode CC_OTHER.

• Expand($tokens expands $tokens (a Tokens), returning a Tokens; there
should be no expandable tokens in the result.

• Invocation($cstoken,$arg,...) Returns a Tokens representing the se-
quence needed to invoke $cstoken on the given arguments (each are Tokens,
or undef for an unsupplied optional argument).

4.1.2 Digestion & Primitives
Other than for implementing TEX’s own primitives, DefPrimitive is needed less
often than DefMacro or DefConstructor. The main thing to keep in mind is
that primitives are processed after macro expansion, by the Stomach. They are most
useful for side-effects, changing the State.

The replacement (which can only be code) gets the Stomach and the control se-
quence arguments as arguments; like macros, these arguments are not expanded or
digested by default, they must be explicitly digested if necessary. The replacement
code must either return nothing (eg. ending with return;) or should return a list (ie.
a Perl list (...)) of digested Boxes or Whatsits.

Nevertheless, functions dealing with digestion and state are important for writing
before & after daemons in constructors, so we give an overview here.

18 CHAPTER 4. CUSTOMIZATION

• Digest($tokens) digests $tokens (a Tokens), returning a list of Boxes and
Whatsits.

• Let($token1,$token2) gives $token1 the same meaning as $token2, like
\let.

Bindings The following functions are useful for accessing and storing information
in the current State. It maintains a stack-like structure that mimics TEX’s approach
to binding; braces { and } open and close stack frames. (The Stomach methods
bgroup and egroup can be used when explicitly needed.)

• LookupValue($symbol), AssignValue($string,$value,$scope)main-
tain arbitrary values in the current State, looking up or assigning the cur-
rent value bound to $symbol (a string). For assignments, the $scope can be
’local’ (the default, if $scope is omitted), which changes the binding in the
current stack frame. If $scope is ’global’, it assigns the value globally by
undoing all bindings. The $scope can also be another string, which indicates a
named scope — but that is a more advanced topic.

• PushValue($symbol,$value,...), PopValue($symbol), UnshiftValue($symbol,$value,...),
ShiftValue($symbol) These maintain the value of $symbol as a list, with the
operatations having the same sense as in Perl; modifications are always global.

• LookupCatcode($char), AssignCatcode($char,$catcode,$scope)main-
tain the catcodes associated with characters.

• LookupMeaning($token), LookupDefinition($token) looks up the cur-
rent meaning of the token, being any executable definition bound for it. If there is
no such defniition LookupMeaning returns the token itself, LookupDefinition
returns undef.

Counters The following functions maintain LATEX-like counters, and generally also
associate an IDwith them. A counter’s print form (ie. \theequation for equations)
often ends up on the refnum attribute of elements; the associated ID is used for the
xml:id attribute.

• NewCounter($name,$within,%options), creates a LATEX-style counters. When
$within is used, the given counter will be reset whenever the counter $within
is incremented. This also causes the associated ID to be prefixed with $within’s
ID. The option idprefix=>$string causes the ID to be prefixed with that
string. For example,

NewCounter(’section’, ’document’, idprefix=>’S’);
NewCounter(’equation’,’document’, idprefix=>’E’,

idwithin=>’section’);

would cause the third equation in the second section to have ID=’S2.E3’.

• CounterValue($name) returns the Number representing the current value.

4.1. LATEXML CUSTOMIZATION 19

• ResetCounter($name) resets the counter to 0.

• StepCounter($name) steps the counter (and resets any others ‘within’ it), and
returns the expansion of \the$name.

• RefStepCounter($name) steps the counter and any ID’s associated with it. It
returns a hash containing refnum (expansion of \the$name) and id (expan-
sion of \the$name@ID)

• RefStepID($name) steps the ID associated with the counter, without actually
stepping the counter; this is useful for unnumbered units that normally would
have both a refnum and ID.

4.1.3 Construction & Constructors

Constructors are where things get interesting, but also complex; they are responsible for
defining how the XML is built. There are basic constructors corresponding to normal
control sequences, as well as environments. Mathematics generally comes down to
constructors, as well, but is covered in Chapter 5.

Here are a couple of trivial examples of constructors:

DefConstructor(’\emph{}’,
"<ltx:emph>#1</ltx:emph>", mode=>’text’);

DefConstructor(’\item[]’,
"<ltx:item>?#1(<ltx:tag>#1</ltx:tag>)");

DefEnvironment(’{quote}’,
’<ltx:quote>#body</ltx:quote>’,
beforeDigest=>sub{ Let(’\\\\’,’\@block@cr’);});

DefConstructor(’\footnote[]{}’,
"<ltx:note class=’footnote’ mark=’#refnum’>#2</ltx:note>",
mode=>’text’,
properties=> sub {

($_[1] ? (refnum=>$_[1]) : RefStepCounter(’footnote’)) });

DefConstructor($prototype,$replacement,%options)

The $replacement for a constructor describes the XML to be generated during the
construction phase. It can either be a string representing the XML as a pattern (described
below), or a subroutine CODE($document,$arg1,...%props) receiving the argu-
ments and properties from the Whatsit; it would invoke the methods of Document
to construct the desired XML. The pattern as illustrated above, simply represents a se-
rialization of the desired XML. In addition to literal replacement, the following may
appear:

• #1,#2,...#name inserts the construction of the argument or property in the
XML;

• &function($a,$b,...) invokes the named function on the given arguments
and inserts its value in place;

20 CHAPTER 4. CUSTOMIZATION

• ?COND(pattern) or ?COND(ifpattern)(elsepattern) conditionally in-
serts the patterns depending on the result of the conditional. COND would typi-
cally be testing the presence of an argument, #1, or property #name or invoking
a function;

• ˆ if this appears at the beginning of the pattern, the replacement is allowed to
float up the current tree to whereever it might be allowed.

Options:

• mode=>(’math’|’text’) switches to math or text mode, if needed;

• requireMath=>1, forbidMath=>1 requires, or forbids, this constructor to ap-
pear in math mode;

• bounded=>1 specifies that all digestion (of arguments and daemons) will take
place within an implicit TEX group, so that any side-effects are localized, rather
than affecting the global state;

• font=>{%hash} switches the font used for any created text; recognized font
keys are family, series, shape, size, color;

• properties=> {%hash} | CODE($stomach,$arg1,..). provides a set of
properties to store in the Whatsit for eventual use in the constructor $replacement.
If a subroutine is used, it also should return a hash of properties;

• beforeDigest=>CODE($stomach),
afterDigest=>CODE($stomach,$whatsit) provides code to be digested
before and after digesting the arguments of the constructor, typically to alter the
context of the digestion (before), or to augment the properties of the Whatsit
(after);

• beforeConstruct=>CODE($document,$whatsit),
afterConstruct=>CODE($document,$whatit) provides code to be run be-
fore and after the main $replacement is effected; occassionaly it is convenient
to use the pattern form for the main $replacement, but one still wants to exe-
cute a bit of Perl code, as well;

• captureBody=>(1 | $token) specifies that an additional argument (like an
environment body) wiil be read until the current TEX grouping ends, or until the
specified $token is encountered. This argument is available to $replacement

as $body;

• scope=>(’global’|’local’|$name) specifies whether this definition is made
globally, or in the current stack frame (default), (or in a named scope);

• reversion=>$string|CODE(...), alias=>$cs can be used when the Whatsit
needs to be reverted into TEX code, and the default of simply reassembling based
on the prototype is not desired. See the code for examples.

Some additional functions useful when writing constructors:

4.1. LATEXML CUSTOMIZATION 21

• ToString($stuff) converts $stuff to a string.

• CleanLabel($arg), CleanIndexKey($arg), CleanBibKey($arg), CleanURL($arg)
cleans up arguments (converting to string, handling invalid characters, etc) to
make the argument appropriate for use as an attribute representing a label, index
ID, etc.

• UTF($hex) returns the Unicode character for the given codepoint; this is useful
for characters below 0x100 where Perl becomes confused about the encoding.

DefEnvironment($prototypte,$replacement,%options)
Environments are largely a special case of constructors, but the prototype starts with

{envname}, rather than \cmd, the replacement will also typically involve #body
representing the contents of the environment.

DefEnvironment takes the same options as DefConstructor, with the ad-
dition of

• afterDigestBegin=>CODE($stomach,$whatsit) provides code to digest
after the \begin{env} is digested;

• beforeDigestEnd=>CODE($stomach) provides code to digest before the \end{env}
is digested.

For those cases where you do not want an environment to correspond to a con-
structor, you may still (as in LATEX), define the two control sequences \envname and
\endenvname as you like.

4.1.4 Document Model
The following declarations are typically only needed when customizing the schema
used by LATEXML.

• RelaxNGSchema($schema,%namespaces) declares the created XML docu-
ment should be fit to the RelaxNG schema in $schema; A file $schema.rng

should be findable in the current search paths. (Note that currently, LATEXML is
unable to directly parse compact notation).

• RegisterNamespace($prefix,$url) associates the prefix with the given
namespace url. This allows you to use $prefix as a namespace prefix when
writing Constructor patterns or XPath expressions.

• Tag($tag,%properties) specifies properties for the given XML $tag. Rec-
ognized properties include: autoOpen=>1 indicates that the tag can automat-
ically be opened if needed to create a valid document; autoClose=>1 indi-
cates that the tag can automatically be closed if needed to create a valid doc-
ument; afterOpen=>$code specifies code to be executed before opening the
tag; the code is passed the Document being constructed as well as the Box (or
Whatsit) responsible for its creation; afterClose=>code similar to afterOpen,
but executed after closing the element.

22 CHAPTER 4. CUSTOMIZATION

4.1.5 Rewriting
The following functions are a bit tricky to use (and describe), but can be quite useful in
some circumstances.

• DefLigature($regexp,%options) applies a regular expression to substitute
textnodes after they are closed; the only option is fontTest=>$code which re-
stricts the ligature to text nodes where the current font passes &$code($font).

• DefMathLigature($code) allows replacement of sequences of math nodes. It
applies $code to the current Document and each sequence of math nodes en-
countered in the document; if a replacement should occur, $code should return
a list of the form ($n,$string,%attributes) in which case, the text content
of the first node is replaced by $string, the given attributes are added, and the
following $n-1 nodes are removed.

• DefRewrite(%spec), DefMathRewrite(%spec) defines document rewrite
rules. These specifications describe what document nodes match:

– label=>$label restricts to nodes contained within an element whose
labels includes $label;

– scope=>$scope generalizes label; the most useful form a string like
’section:1.3.2’where it matches the section element whose refnum
is 1.3.2;

– xpath=>$xpath selects nodes matching the given XPath;

– match=>$tex selects nodes that look like what processing the TEX string
$tex would produce;

– regexp=>$regexp selects text nodes that match the given regular expres-
sion.

The following specifications describe what to do with the matched nodes:

– attributes=>{%attr} adds the given attributes to the matching nodes;

– replace=>$tex replaces the matching nodes with the result of processing
the TEX string $tex.

4.1.6 Packages and Options
The following declarations are useful for defining LATEXML bindings, including option
handling. As when defining LATEX packages, the following, if needed at all, need to
appear in the order shown.

• DeclareOption($option,$handler) specifies the handler for $optionwhen
it is passed to the current package or class. If $option is undef, it defines the
default handler, for options that are otherwise unrecognized. $handler can be
either a string to be expanded, or a sub which is executed like a primitive.

4.2. LATEXMLPOST CUSTOMIZATION 23

• PassOptions($name,$type,@options) specifies that the given options should
be passed to the package (if $type is sty) or class (if $type is cls) $name, if
it is ever loaded.

• ProcessOptions(%keys) processes any options that have been passed to the
current package or class. If inorder=>1 is specified, the options will be pro-
cessed in the order passed to the package (\ProcessOptions*); otherwise
they will be processed in the declared order (\ProcessOptions).

• ExecuteOptions(@options) executes the handlers for the specific set of op-
tions @options.

• RequirePackage($pkgname,%keys) loads the specified package. The key-
word options have the following effect: options=>$options can provide an
explicit array of string specifying the options to pass to the package; withoptions=>1
means that the options passed to the currently loading class or package should
be passed to the requested package; type=>$ext specifies the type of the pack-
age file (default is sty); raw=>1 specifies that reading the raw style file (eg.
pkg.sty) is permissible if there is no specific LATEXML binding (eg. pkg.sty.ltxml)
after=>$after specifies a string or Tokens to be expanded after the package
has finished loading.

• LoadClass($classname,%keys) Similar to RequirePackage, but loads
a class file (type=>’cls’).

• AddToMacro($cstoken,$tokens) a little used utilty to add material to the
expansion of $cstoken, like an \edef; typically used to add code to a class or
package hook.

4.1.7 Miscellaneous
Other useful stuff:

• RawTeX($texstring) expands and processes the $texstring; This is typ-
ically useful to include definitions copied from a TEX stylefile, when they are
approriate for LATEXML, as is. Single-quoting the $texstring is useful, since it
isn’t interpolated by Perl, and avoids having to double all the slashes!

4.2 latexmlpost Customization
The current postprocessing framework works by passing the document through a se-
quence of postprocessing filter modules. Each module is responsible for carrying out
a specific transformation, augmentation or conversion on the document. In principle,
this architecture has the flexibility to employ new filters to perform new or customized
conversions. However, the driver, latexmlpost, currently provides no convenient
means to instanciate and incorporate outside filters, short of developing your own spe-
cialized version.

24 CHAPTER 4. CUSTOMIZATION

Consequently, we will consider custom postprocessing filters outside the scope of
this manual (but of course, you are welcome to explore the code, or contact us with
suggestions).

The two areas where customization is most practical is in altering the XSLT trans-
forms used and extending the CSS stylesheets.

4.2.1 XSLT
LATEXML provides stylesheets for transforming its XML format to XHTML and HTML.
These stylesheets are modular with components corresponding to the schema modules.
Probably the best strategy for customizing the transform involves making a copy of
the standard base stylesheets, LaTeXML-xhtml.xsl and LaTeXML-html.xsl,
found at installationdir/LaTeXML/style/ — they’re short, consisting mainly of
sequence of xsl:include — and adding your own rules, or including your own
modules. The two stylesheets differ primarily in their use of namespaces and handling
of math.

Naturally, this requires a familiarity with LATEXML’s schema (see F), as well as
XSLT and XHTML. See the other stylesheet modules in the same directory as the base
stylesheet for guidance.

Conversion to formats other than XHTML are, of course, possible, as well, but are
neither supplied nor covered here. How complex the transformation will be depends
on the extent that the LATEXML schema can be mapped to the desired one, and to what
extent LATEXML has lost or hidden information represented in the original document.
Again, familiarity with the schema is needed, and the provided XHTML stylesheets may
suggest an approach.

4.2.2 CSS
CSS stylesheets can be supplied to latexmlpost to be included in the generated
documents in addition to, or as a replacement for, the standard stylesheet core.css.
See the directory installationdir/LaTeXML/style/ for samples.

To best take advantage of this capability so as to design CSS rules with the correct
specificity, the following points are helpful:

• LATEXML converts the TEX to its own schema, with structural elements (like
equation) getting their own tag; others are transformed to something more
generic, such as note. In the latter case, a class attribute is often used to distin-
guish. For example, a \footnote generates

<n o t e c l a s s = ’ f o o t n o t e ’> . . .

whereas an \endnote generates

<n o t e c l a s s = ’ e n d n o t e ’> . . .

• The provided XSLT stylesheets transform LATEXML’s schema to XHTML, generat-
ing a combined class attribute consisting of any class attributes already present as

4.2. LATEXMLPOST CUSTOMIZATION 25

well as the LATEXML tag name. However, there are some variations on the theme.
For example, LATEX’s \section yeilds a LATEXML element section, with a
title element underneath. When transformed to XHTML, the former becomes
a <div class=’section’>, while the latter becomes <h2 class=’section-title’>
(for example, the h-level may vary with the document structure),

26 CHAPTER 4. CUSTOMIZATION

Chapter 5

Mathematics

There are several issues that have to be dealt with in treating the mathematics. On the
one hand, the TEX markup gives a pretty good indication of what the author wants the
math to look like, and so we would seem to have a good handle on the conversion to
presentation forms. On the other hand, content formats are desirable as well; there
are a few, but too few, clues about what the intent of the mathematics is. And in
fact, the generation of even Presentation MathML of high quality requires recognizing
the mathematical structure, if not the actual semantics. The mathematics processing
must therefore preserve the presentational information provided by the author, while
inferring, likely with some help, the mathematical content.

From a parsing point of view, the TEX-like processing serves as the lexer, tok-
enizing the input which LATEXML will then parse [perhaps eventually a type-analysis
phase will be added]. Of course, there are a few twists. For one, the tokens, repre-
sented by XMTok, can carry extra attributes such as font and style, but also the name,
meaning and grammatical role, with defaults that can be overridden by the author —
more on those, in a moment. Another twist is that, although LATEX’s math markup
is not nearly as semantic as we might like, there is considerable semantics and struc-
ture in the markup that we can exploit. For example, given a \frac, we’ve already
established the numerator and denominator which can be parsed individually, but the
fraction as a whole can be directly represented as an application, using XMApp, of a
fraction operator; the resulting structure can be treated as atomic within its containing
expression.This structure preserving character greatly simplifies the parsing task and
helps reduce misinterpretation.

The parser, invoked by the postprocessor, works only with the top-level lists of
lexical tokens, or with those sublists contained in an XMArg. The grammar works
primarily through the name and grammatical role. The name is given by an attribute,
or the content if it is the same. The role (things like ID, FUNCTION, OPERATOR,
OPEN, . . .) is also given by an attribute, or, if not present, the name is looked up in a
document-specific dictionary (jobname.dict), or in a default dictionary.

Additional exceptions that need fuller explanation are:

• Constructors may wish to create a dual object (XMDual) whose children are

27

28 CHAPTER 5. MATHEMATICS

the semantic and presentational forms.

• Spacing and similar markup generates XMHint elements, which are currently
ignored during parsing, but probably shouldn’t.

5.1 Math Details

LATEXML processes mathematical material by proceeding through several stages:

• Basic processing of macros, primitives and constructors resulting in an XML
document; the math is primarily represented by a sequence of tokens (XMTok)
or structured items (XMApp, XMDual) and hints (XMHint, which are ignored).

• Document tree rewriting, where rules are applied to modify the document tree.
User supplied rules can be used here to clarify the intent of markup used in the
document.

• Math Parsing; a grammar based parser is applied, depth first, to each level of
the math. In particular, at the top level of each math expression, as well as
each subexpression within structured items (these will have been contained in
an XMArg or XMWrap element). This results in an expression tree that will
hopefully be an accurate representation of the expression’s structure, but may be
ambigous in specifics (eg. what the meaning of a superscript is). The parsing is
driven almost entirely by the grammatical role assigned to each item.

• Not yet implemented a following stage must be developed to resolve the semantic
ambiguities by analyzing and augmenting the expression tree.

• Target conversion: from the internal XM* representation to MathML or Open-
Math.

The Math element is a top-level container for any math mode material, serving
as the container for various representations of the math including images (through at-
tributes mathimage, width and height), textual (through attributes tex, content-tex
and text), MathML and the internal representation itself. The mode attribute speci-
fies whether the math should be in display or inline mode.

5.1.1 Internal Math Representation

The XMath element is the container for the internal representation
The following attributes can appear on all XM* elements:

role the grammatical role that this element plays

open, close parenthese or delimiters that were used to wrap the expression repre-
sented by this element.

5.1. MATH DETAILS 29

argopen, argclose, separators delimiters on an function or operator (the first
element of an XMApp) that were used to delimit the arguments of the function.
The separators is a string of the punctuation characters used to separate argu-
ments.

xml:id a unique identifier to allow reference (XMRef) to this element.

Math Tags The following tags are used for the intermediate math representation:

XMTok represents a math token. It may contain text for presentation. Additional
attributes are:

name the name that represents the meaning of the token; this overrides the con-
tent for identifying the token.

omcd the OpenMath content dictionary that the name belongs to.

font the font to be used for presenting the content.

style ?

size ?

stackscripts whether scripts should be stacked above/below the item, in-
stead of the usual script position.

XMApp represents the generalized application of some function or operator to argu-
ments. The first child element is the operator, the remainig elements are the
arguments. Additional attributes:

name the name that represents the meaning of the construct as a whole.

stackscripts ?

XMDual combines representations of the content (the first child) and presentation (the
second child), useful when the two structures are not easily related.

XMHint represents spacing or other apparent purely presentation material.

name names the effect that the hint was intended to achieve.

style ?

XMWrap serves to assert the expected type or role of a subexpression that may other-
wise be difficult to interpret — the parser is more forgiving about these.

name ?

style ?

XMArg serves to wrap individual arguments or subexpressions, created by structured
markup, such as \frac. These subexpressions can be parsed individually.

rule the grammar rule that this subexpression should match.

30 CHAPTER 5. MATHEMATICS

XMRef refers to another subexpression,. This is used to avoid duplicating arguments
when constructing an XMDual to represent a function application, for example.
The arguments will be placed in the content branch (wrapped in an XMArg)
while XMRef’s will be placed in the presentation branch.

idref the identifier of the referenced math subexpression.

5.1.2 Grammatical Roles
The role attempts to capture the syntactic nature of each item. This is used primarily
to drive the parsing; the grammar rules are keyed on the role, rather than content,
of the nodes. The role is also used to drive the conversion to presentation markup,
especially Presentation MathML, and in fact some values of role are only used that
way, never appearing explicitly in the grammar.

The following grammatical roles are recognized by the math parser. These values
can be specified in the role attribute during the initial document construction or by
rewrite rules. Although the precedence of operators is loosely described in the follow-
ing, since the grammar contains various special case productions, no rigidly ordered
precedence is given.

ATOM a general atomic subexpression.

ID a variable-like token, whether scalar or otherwise.

PUNCT punctuation.

APPLYOP an explicit infix application operator (high precedence).

RELOP a relational operator, loosely binding.

ARROW an arrow operator (with little semantic significance). treated equivalently to
RELOP.

METARELOP an operator used for relations between relations, with lower precedence.

ADDOP an addition operator, precedence between relational and multiplicative opera-
tors.

MULOP a multiplicative operator, high precedence.

SUPOP An operator appearing in a superscript, such as a collection of primes.

OPEN an open delimiter.

CLOSE a close delimiter.

MIDDLE a middle operator used to group items between an OPEN, CLOSE pair.

OPERATOR a general operator; higher precedence than function application. For
example, for an operator A, and function F , AFx would be interpretted as
(A(F))(x).

5.1. MATH DETAILS 31

SUMOP a summation/union operator.

INTOP an integral operator.

LIMITOP a limiting operator.

DIFFOP a differential operator.

BIGOP a general operator, but lower precedence, such as a P preceding an integral
to denote the principal value. Note that SUMOP, INTOP, LIMITOP, DIFFOP
and BIGOP are treated equivalently by the grammar, but are distinguished to
facilitate (eventually!) analyzing the argument structure (eg bound variables and
differentials within an integral). Note are SUMOP and LIMITOP significantly
different in this sense?

VERTBAR

FUNCTION a function which (may) apply to following arguments with higher prece-
dence than addition and multiplication, or parenthesized arguments.

NUMBER a number.

POSTSUPERSCRIPT the usual superscript, where the script is treated as an argument,
but the base will be determined by parsing. Note that this is not necessarily
assumed to be a power. Very high precedence.

POSTSUBSCRIPT Similar to POSTSUPERSCRIPT for subscripts.

FLOATINGSUPERSCRIPT A special case for a superscript on an empty base, ie.
{}ˆ{x}. It is often used to place a pre-superscript or for non-math uses (eg.
10${}ˆ{th}).

FLOATINGSUBSCRIPT Similar to POSTSUPERSCRIPT for subscripts.

POSTFIX for a postfix operator

UNKNOWN an unknown expression. This is the default for token elements, and gener-
ates a warning if the unknown seems to be used as a function.

The following roles are not used in the grammar, but are used to capture the pre-
sentation style:

STACKED corresponds to stacked structures, such as \atop, and the presentation of
binomial coefficients.

32 CHAPTER 5. MATHEMATICS

Chapter 6

ToDo

Lots. . . !

• Many useful LATEX packages have not been implemented, and those that are
aren’t necessarily complete.

Contributed bindings are, of course, welcome!

• Low-level TEX capabilities, such as text modes (eg. vertical, horizonatal), box
details like width and depth, as well as fonts, aren’t mimicked faithfully, although
it isn’t clear how much can be done at the ‘semantic’ level.

• a richer math grammar, or more flexible parsing engine, better inferencing of
math structure, better inferencing of math meaning. . . and thus better Content
MathML and OpenMath support!

• Could be faster.

• Easier customization of the document schema, XSLT stylesheets.

• . . . um, . . . documentation!

33

34 CHAPTER 6. TODO

Acknowledgements

Thanks to the DLMF project and it’s Editors — Frank Olver, Dan Lozier, Ron Boisvert,
and Charles Clark — for providing the motivation and opportunity to pursue this.

Thanks to the arXMLiv project, in particular Michael Kohlhase and Heinrich Stamer-
johanns, for providing a rich testbed and testing framework to exercise the system. Ad-
ditionally, thanks to Ioan Sucan, Deyan Ginev and Catalin David for testing help and
for implementing additional packages.

35

36 CHAPTER 6. TODO

Appendix A

Command Documentation

latexml

Transforms a TeX/LaTeX file into XML.

Synopsis
latexml [options] texfile

Options:
--destination=file specifies destination file (default stdout).
--output=file [obsolete synonym for --destination]
--preload=module requests loading of an optional module;

can be repeated
--includestyles allows latexml to load raw *.sty file;

by default it avoids this.
--path=dir adds dir to the paths searched for files,

modules, etc;
--documentid=id assign an id to the document root.
--quiet suppress messages (can repeat)
--verbose more informative output (can repeat)
--strict makes latexml less forgiving of errors
--bibtex processes the file as a BibTeX bibliography.
--xml requests xml output (default).
--tex requests TeX output after expansion.
--box requests box output after expansion

and digestion.
--noparse suppresses parsing math
--nocomments omit comments from the output
--inputencoding=enc specify the input encoding.
--VERSION show version number.
--debug=package enables debugging output for the named

37

38 APPENDIX A. COMMANDS

package
--help shows this help message.

If texfile is ’-’, latexml reads the TeX source from standard input. If texfile has an
explicit extention of .bib, it is processed as a BibTeX bibliography.

Options & Arguments

--destination=file

Specifies the destination file; by default the XML is written to stdout.

--preload=module

Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use --preload=LaTeX.pool to force LaTeX
mode.

--includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of ltxml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

--path=dir

Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

--documentid=id

Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

--quiet

Reduces the verbosity of output during processing, used twice is pretty silent.

--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

39

--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using –strict makes them generate fatal errors.

--bibtex

Forces latexml to treat the file as a BibTeX bibliography. Note that the timing
is slightly different than the usual case with BibTeX and LaTeX. In the latter
case, BibTeX simply selects and formats a subset of the bibliographic entries;
the actual TeX expansion is carried out when the result is included in a LaTeX
document. In contrast, latexml processes and expands the entire bibliography;
the selection of entries is done during postprocessing. This also means that any
packages that define macros used in the bibliography must be specified using the
--preload option.

--xml

Requests XML output; this is the default.

--tex

Requests TeX output for debugging purposes; processing is only carried out
through expansion and digestion. This may not be quite valid TeX, since Uni-
code may be introduced.

--box

Requests Box output for debugging purposes; processing is carried out through
expansion and digestions, and the result is printed.

--nocomments

Normally latexml preserves comments from the source file, and adds a comment
every 25 lines as an aid in tracking the source. The option –nocomments discards
such comments.

--inputencoding=encoding
Specify the input encoding, eg. --inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only enables
the translation of the input bytes to UTF-8 used internally by LaTeXML, but
does not affect catcodes. In such cases, you should be using the inputenc pack-
age. Note also that this does not affect the output encoding, which is always
UTF-8.

--VERSION

Shows the version number of the LaTeXML package..

--debug=package
Enables debugging output for the named package. The package is given without
the leading LaTeXML::.

40 APPENDIX A. COMMANDS

--help

Shows this help message.

See also
latexmlpost, latexmlmath, LaTeXML

41

latexmlpost

Postprocesses an xml file generated by latexml to perform common tasks, such as
convert math to images and processing graphics inclusions for the web.

Synopsis
latexmlpost [options] xmlfile

Options:
--verbose shows progress during processing.
--VERSION show version number.
--help shows help message.
--sourcedirectory=sourcedir specifies directory of the original

source TeX file.
--validate, --novalidate Enables (the default) or disables

validation of the source xml.
--format=html|xhtml|xml requests the output format.
--destination=file specifies output file (and directory).
--omitdoctype omits the Doctype declaration,
--noomitdoctype disables the omission (the default)
--numbersections enables (the default) the inclusion of

section numbers in titles and crossrefs.
--nonumbersections disables the above
--stylesheet=xslfile requests the XSL transform using the

given xslfile as stylesheet.
--css=cssfile adds a css stylesheet to html/xhtml

(can be repeated)
--nodefaultcss disables the default css stylesheet
--split requests splitting each document
--nosplit disables the above (default)
--splitat specifies level to split the document
--splitpath=xpath specifies xpath expression for splitting

(default is section-like, if splitting)
--splitnaming=(id|idrelative|label|labelrelative) specifies how

to name split files (def. idrelative).
--scan scans documents to extract ids, labels,

section titles, etc. (default)
--noscan disables the above
--crossref fills in crossreferences (default)
--nocrossref disables the above
--urlstyle=(server|negotiated|file) format to use for urls

(default server).
--index requests filling in the index (default)
--noindex disables the above
--splitindex Splits the index into pages per initial.

42 APPENDIX A. COMMANDS

--nosplitindex disables the above (default)
--permutedindex permutes index phrases in the index
--nopermutedindex disables the above (default)
--bibliography=file specifies a bibliography file
--splitbibliography splits the bibliography into pages per

initial.
--nosplitbibliography disables the above (default)
--prescan carries out only the split (if enabled)

and scan, storing cross-referencing data
in dbfile
(default is complete processing)

--dbfile=dbfile specifies file to store crossreferences
--sitedirectory=dir specifies the base directory of the site
--mathimages converts math to images

(default for html format)
--nomathimages disables the above
--mathimagemagnification=mag specifies magnification factor
--presentationmathml converts math to Presentation MathML

(default for xhtml format)
--pmml alias for --presentationmathml
--nopresentationmathml disables the above
--linelength=n formats presentation mathml to a

linelength max of n characters
--contentmathml converts math to Content MathML
--nocontentmathml disables the above (default)
--cmml alias for --contentmathml
--openmath converts math to OpenMath
--noopenmath disables the above (default)
--om alias for --openmath
--parallelmath requests parallel math markup for MathML

(default when multiple math formats)
--noparallelmath disables the above
--keepXMath preserves the intermediate XMath

representation (default is to remove)
--graphicimages converts graphics to images (default)
--nographicimages disables the above
--pictureimages converts picture environments to

images (default)
--nopictureimages disables the above
--svg converts picture environments to SVG
--nosvg disables the above (default)

If xmlfile is ’-’, latexmlpost reads the XML from standard input.

43

Options & Arguments
General Options

--verbose

Requests informative output as processing proceeds. Can be repeated to increase
the amount of information.

--VERSION

Shows the version number of the LaTeXML package..

--help

Shows this help message.

Source Options

--sourcedirectory=source
Specifies the directory where the original latex source is located. Unless latexml-
post is run from that directory, or it can be determined from the xml filename, it
may be necessary to specify this option in order to find graphics and style files.

--validate, --novalidate
Enables (or disables) the validation of the source XML document (the default).

Format Options

--format=(html|xhtml|xml)
Specifies the output format for post processing. html format converts the mate-
rial to html and the mathematics to png images. xhtml format converts to xhtml
and uses presentation MathML (after attempting to parse the mathematics) for
representing the math. In both cases, any graphics will be converted to web-
friendly formats and/or copied to the destination directory. By default, xml, the
output is left in LaTeXML’s xml, but the math is parsed and converted to presen-
tation MathML. For html and xhtml, a default stylesheet is provided, but see the
--stylesheet option.

--destination=destination
Specifies the destination file and directory. The directory is needed for mathim-
ages and graphics processing.

--omitdoctype, --noomitdoctype
Omits (or includes) the document type declaration. The default is to include it if
the document model was based on a DTD.

--numbersections, --nonumbersections
Includes (default), or disables the inclusion of section, equation, etc, numbers in
the formatted document and crossreference links.

44 APPENDIX A. COMMANDS

--stylesheet=xslfile

Requests the XSL transformation of the document using the given xslfile as
stylesheet. If the stylesheet is omitted, a ‘standard’ one appropriate for the format
(html or xhtml) will be used.

--css=cssfile

Adds cssfile as a css stylesheet to be used in the transformed html/xhtml. Multi-
ple stylesheets can be used; they are included in the html in the order given, fol-
lowing the default core.css (but see --nodefaultcss). Some stylesheets
included in the distribution are –css=navbar-left Puts a navigation bar on the
left. (default omits navbar) –css=navbar-right Puts a navigation bar on the left.
–css=theme-blue A blue coloring theme for headings. –css=amsart A style suit-
able for journal articles.

--nodefaultcss

Disables the inclusion of the default core.css stylesheet.

Site & Crossreferencing Options

--split, --nosplit

Enables or disables (default) the splitting of documents into multiple ‘pages’.
If enabled, the the document will be split into sections, bibliography, index and
appendices (if any) by default, unless --splitpath is specified.

--splitat=unit

Specifies what level of the document to split at. Should be one of chapter,
section (the default), subsection or subsubsection. For more con-
trol, see --splitpath.

--splitpath=xpath

Specifies an XPath expression to select nodes that will generate separate pages.
The default splitpath is //ltx:section |//ltx:bibliography |//ltx:appendix |//ltx:index

Specifying –splitpath=”//ltx:section |//ltx:subsection |//ltx:bibliography |//ltx:appendix
|//ltx:index”

would split the document at subsections as well as sections.

--splitnaming=(id|idrelative|label|labelrelative)
Specifies how to name the files for subdocuments created by splitting. The values
id and label simply use the id or label of the subdocument’s root node for it’s
filename. idrelative and labelrelative use the portion of the id or
label that follows the parent document’s id or label. Furthermore, to impose
structure and uniqueness, if a split document has children that are also split, that
document (and it’s children) will be in a separate subdirectory with the name
index.

45

--scan, --noscan
Enables (default) or disables the scanning of documents for ids, labels, refer-
ences, indexmarks, etc, for use in filling in refs, cites, index and so on. It may
be useful to disable when generating documents not based on the LaTeXML
doctype.

--crossref, --nocrossref
Enables (default) or disables the filling in of references, hrefs, etc based on a
previous scan (either from --scan, or --dbfile) It may be useful to disable
when generating documents not based on the LaTeXML doctype.

--urlstyle=(server|negotiated|file)
This option determines the way that URLs within the documents are formatted,
depending on the way they are intended to be served. The default, server,
eliminates unneccessary trailing index.html. With negotiated, the trail-
ing file extension (typically html or xhtml) are eliminated. The scheme file
preserves complete (but relative) urls so that the site can be browsed as files
without any server.

--index, --noindex
Enables (default) or disables the generation of an index from indexmarks em-
bedded within the document. Enabling this has no effect unless there is an index
element in the document (generated by \printindex).

--splitindex, --nosplitindex
Enables or disables (default) the splitting of generated indexes into separate
pages per initial letter.

--bibliography=pathname

Specifies a bibliography file generated from a BibTeX file and used to fill in a bib-
liography element. Hand-written bibliographies placed in a thebibliography
environment do not need this processing. Enabling this has no effect unless there
is an bibliography element in the document (generated by \bibliography).

Note that this option provides the bibliography to be used to fill in the bibliogra-
phy element (generated by \bibliography); latexmlpost does not (currently)
directly process and format such a bibliography.

--splitbibliography, --nosplitbibliography
Enables or disables (default) the splitting of generated bibliographies into sepa-
rate pages per initial letter.

--prescan

By default latexmlpost processes a single document into one (or more; see
--split) destination files in a single pass. When generating a complicated site
consisting of several documents it may be advantageous to first scan through the

46 APPENDIX A. COMMANDS

documents to extract and store (in dbfile) cross-referencing data (such as ids,
titles, urls, and so on). A later pass then has complete information allowing all
documents to reference each other, and also constructs an index and bibliography
that reflects the entire document set. The same effect (though less efficient) can
be achieved by running latexmlpost twice, provided a dbfile is specified.

--dbfile=file

Specifies a filename to use for the crossreferencing data when using two-pass
processing. This file may reside in the intermediate destination directory.

--sitedirectory=dir

Specifies the base directory of the overall web site. Pathnames in the database
are stored in a form relative to this directory to make it more portable.

Math Options

These options specify how math should be converted into other formats. Multiple
formats can be requested; how they will be combined depends on the format and other
options.

--mathimages, --nomathimages

Requests or disables the conversion of math to images. Conversion is the default
for html format.

--mathimagemagnification=factor

Specifies the magnification used for math images, if they are made. Default is
1.75.

--presentationmathml, --nopresentationmathml

Requests or disables conversion of math to Presentation MathML. Conversion is
the default for xhtml format.

--linelength=number

(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--contentmathml, --nocontentmathml

Requests or disables conversion of math to Content MathML. Conversion is dis-
abled by default. Note that this conversion is only partially implemented.

--openmath

Requests or disables conversion of math to OpenMath. Conversion is disabled
by default. Note that this conversion is only partially implemented.

47

--parallelmath, --noparallelmath
Requests or disables parallel math markup. Parallel markup is the default for
xhtml formats when multiple math formats are requested.

This method uses the MathML semantics element with additional formats
appearing as annotation’s. The first math format requested must be either
Presentation or Content MathML; additional formats may be MathML or Open-
Math.

If this option is disabled and multiple formats are requested, the representations
are simply stored as separate children of the Math element.

--keepXMath

By default, when any of the MathML or OpenMath conversions are used, the
intermediate math representation will be removed; this option preserves it.

Graphics Options

--graphicimages, --nographicimages
Enables (default) or disables the conversion of graphics to web-appropriate for-
mat (png).

--pictureimages, --nopictureimages
Enables (default) or disables the conversion of picture environments and pstricks
material into images.

--svg, --nosvg
Enables or disables (default) the conversion of picture environments and pstricks
material to SVG.

See also
latexml, latexmlmath, LaTeXML

48 APPENDIX A. COMMANDS

latexmlmath

Transforms a TeX/LaTeX math expression into various formats.

Synopsis
latexml [options] texmath

Options:
--mathimage=file converts to image in file
--magnification=mag specifies magnification factor
--presentationmathml=file converts to Presentation MathML
--pmml=file alias for --presentationmathml
--linelength=n do linewrapping of pMML
--contentmathml=file convert to Content MathML
--cmml=file alias for --contentmathml
--openmath=file convert to OpenMath
--om=file alias for --openmath
--XMath=file convert to LaTeXML’s internal format
--noparse disables parsing of math

(not useful for cMML or openmath)
--preload=file loads a style file.
--includestyles allows processing raw *.sty files

(normally it avoids this)
--path=dir adds a search path for style files.
--quiet reduces verbosity (can be repeated)
--verbose increases verbosity (can be repeated)
--strict be more strict about errors.
--documentid=id assign an id to the document root.
--debug=package enables debugging output for the

named package
--VERSION show version number and exit.
--help shows this help message.

If texmath is ’-’, latexml reads the TeX from standard input. If any of the output
files are ’-’, the result is printed on standard output.

Options & Arguments
Conversion Options

These options specify what formats the math should be converted to. In each case, the
destination file is given. Except for mathimage, the file can be given as ’-’, in which
case the result is printed to standard output.

--mathimage=file
Requests conversion to png images.

49

--magnification=factor

Specifies the magnification used for math image. Default is 1.75.

--presentationmathml=file

Requests conversion to Presentation MathML.

--linelength=number

(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--contentmathml=file

Requests conversion to Content MathML. Note that this conversion is only par-
tially implemented.

--openmath=file

Requests conversion to OpenMath. Note that this conversion is only partially
implemented.

--XMath=file

Requests convertion to LaTeXML’s internal format.

Other Options

--preload=module

Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use --preload=LaTeX.pool to force LaTeX
mode.

--includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of ltxml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

--path=dir

Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

50 APPENDIX A. COMMANDS

--documentid=id
Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

--quiet

Reduces the verbosity of output during processing, used twice is pretty silent.

--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using –strict makes them generate fatal errors.

--VERSION

Shows the version number of the LaTeXML package..

--debug=package
Enables debugging output for the named package. The package is given without
the leading LaTeXML::.

--help

Shows this help message.

BUGS
This program runs much slower than would seem justified. This is a result of the
relatively slow initialization including loading TeX and LaTeX macros and the schema.
Normally, this cost would be ammortized over large documents, whereas, in this case,
we’re processing a single math expression.

See also
latexml, latexmlpost, LaTeXML

Appendix B

Implemented Bindings

Bindings for the following classes and packages are supplied with the distribution:

classes: aa, aastex, amsart, amsbook, amsproc, article, book, elsart, emulateapj, gen-
j-l, gen-m-l, gen-p-l, iopart, llncs, mn, mn2e, report, revtex, revtex4, svjour,
svmult

packages: a4, a4wide, aasms, aaspp, aastex, acronym, ae, alltt, amsbsy, amscd, ams-
fonts, amsmath, amsopn, amsrefs, amssymb, amstex, amstext, amsthm, amsxtra,
array, avant, bbm, beton, bm, bookman, ccfonts, chancery, charter, cite, cm-
bright, color, comment, concmath, courier, dcolumn, elsart, emulateapj, epsf,
epsfig, eucal, eufrak, euler, eulervm, eurosym, euscript, exscale, fixltx2e, fourier,
graphics, graphicx, helvet, hhline, html, hyperref, ifpdf, iopams, keyval, latexml,
latexsym, listings, longtable, lscape, luximono, makeidx, mathpazo, mathpple,
mathptm, mathptmx, multicol, multido, multirow, natbib, newcent, palatino, par-
alist, pifont, psfig, pspicture, pst-grad, pst-node, pstricks, pxfonts, revsymb, rev-
tex, revtex4, rsfs, supertabular, tabularx, textcomp, times, tocbibind, txfonts, up-
ref, url, utopia, wrapfig, yfonts

51

52 APPENDIX B. BINDINGS

Appendix C

Core Module Documentation

LaTeXML

Transforms TeX into XML.

Synopsis

use LaTeXML;
my $latexml = LaTeXML->new();
$latexml->convertAndWrite("adocument");

But also see the convenient command line script latexml which suffices for
most purposes.

Description

Methods

my $latexml = LaTeXML->new(%options);

Creates a new LaTeXML object for transforming TeX files into XML.

verbosity : Controls verbosity; higher is more verbose,
smaller is quieter. 0 is the default.

strict : If true, undefined control sequences and
invalid document constructs give fatal
errors, instead of warnings.

includeComments : If false, comments will be excluded
from the result document.

preload : an array of modules to preload
searchpath : an array of paths to be searched for Packages

and style files.

53

54 APPENDIX C. MODULES

(these generally set config variables in the LaTeXML::State object)

$latexml->convertAndWriteFile($file);

Reads the TeX file $file.tex, digests and converts it to XML, and saves it in
$file.xml.

$doc = $latexml->convertFile($file);

Reads the TeX file $file, digests and converts it to XML and returns the re-
sulting XML::LibXML::Document.

$doc = $latexml->convertString($string);

Digests $string, presumably containing TeX markup, converts it to XML and
returns the XML::LibXML::Document.

$latexml->writeDOM($doc,$name);

Writes the XML document to $name.xml.

$box = $latexml->digestFile($file);

Reads the TeX file $file, and digests it returning the LaTeXML::Box rep-
resentation.

$box = $latexml->digestString($string);

Digests $string, which presumably contains TeX markup, returning the LaTeXML::Box
representation.

$doc = $latexml->convertDocument($digested);

Converts $digested (the LaTeXML::Box reprentation) into XML, return-
ing the XML::LibXML::Document.

Customization

In the simplest case, LaTeXML will understand your source file and convert it auto-
matically. With more complicated (realistic) documents, you will likely need to make
document specific declarations for it to understand local macros, your mathematical
notations, and so forth. Before processing a file doc.tex, LaTeXML reads the file
doc.latexml, if present. Likewise, the LaTeXML implementation of a TeX style file,
say style.sty is provided by a file style.ltxml.

See LaTeXML::Package for documentation of these customization and imple-
mentation files.

See also
See latexml for a simple command line script.

See LaTeXML::Package for documentation of these customization and imple-
mentation files.

For cases when the high-level declarations described in LaTeXML::Package
are not enough, or for understanding more of LaTeXML’s internals, see

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module
http://search.cpan.org/search?query=XML::LibXML::Document&mode=module
http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

55

LaTeXML::State

maintains the current state of processing, bindings or variables, definitions, etc.

LaTeXML::Token, LaTeXML::Mouth and LaTeXML::Gullet

deal with tokens, tokenization of strings and files, and basic TeX sequences such
as arguments, dimensions and so forth.

LaTeXML::Box and LaTeXML::Stomach

deal with digestion of tokens into boxes.

LaTeXML::Document, LaTeXML::Model, LaTeXML::Rewrite

dealing with conversion of the digested boxes into XML.

LaTeXML::Definition and LaTeXML::Parameters

representation of LaTeX macros, primitives, registers and constructors.

LaTeXML::MathParser

the math parser.

LaTeXML::Global, LaTeXML::Error, LaTeXML::Object

other random modules.

56 APPENDIX C. MODULES

LaTeXML::Object

Abstract base class for most LaTeXML objects.

Description
LaTeXML::Object serves as an abstract base class for all other objects (both the
data objects and control objects). It provides for common methods for stringification
and comparison operations to simplify coding and to beautify error reporting.

Methods

$string = $object->stringify;

Returns a readable representation of $object, useful for debugging.

$string = $object->toString;

Returns the string content of $object; most useful for extracting a usable string
from tokens or boxes that might representing a filename or such.

$boole = $object->equals($other);

Returns whether $object and $other are equal. Should perform a deep compari-
sion, but the default implementation just compares for object identity.

$boole = $object->isaToken;

Returns whether $object is an LaTeXML::Token.

$boole = $object->isaBox;

Returns whether $object is an LaTeXML::Box.

$boole = $object->isaDefinition;

Returns whether $object is an LaTeXML::Definition.

$digested = $object->beDigested;

Does whatever is needed to digest the object, and return the digested representa-
tion. Tokens would be digested into boxes; Some objects, such as numbers can
just return themselves.

$object->beAbsorbed($document);

Do whatever is needed to absorb the $object into the $document, typically
by invoking appropriate methods on the $document.

57

LaTeXML::Definition

Control sequence definitions.

Description
These represent the various executables corresponding to control sequences. See LaTeXML::Package
for the most convenient means to create them.

LaTeXML::Expandable

represents macros and other expandable control sequences that are carried out in
the Gullet during expansion. The results of invoking an LaTeXML::Expandable
should be a list of LaTeXML::Tokens.

LaTeXML::Primitive

represents primitive control sequences that are primarily carried out for side
effect during digestion in the LaTeXML::Stomach and for changing the
LaTeXML::State. The results of invoking a LaTeXML::Primitive, if
any, should be a list of digested items (LaTeXML::Box, LaTeXML::List or
LaTeXML::Whatsit).

LaTeXML::Register

is set up as a speciallized primitive with a getter and setter to access and store
values in the Stomach.

LaTeXML::CharDef

represents a further specialized Register for chardef.

LaTeXML::Constructor

represents control sequences that contribute arbitrary XML fragments to the doc-
ument tree. During digestion, a LaTeXML::Constuctor records the argu-
ments used in the invokation to produce a LaTeXML::Whatsit. The result-
ing LaTeXML::Whatsit (usually) generates an XML document fragment
when absorbed by an instance of LaTeXML::Document. Additionally, a
LaTeXML::Constructor may have beforeDigest and afterDigest daemons
defined which are executed for side effect, or for adding additional boxes to the
output.

More documentation needed, but see LaTeXML::Package for the main user access
to these.

Methods in general

$token = $defn->getCS;

Returns the (main) token that is bound to this definition.

58 APPENDIX C. MODULES

$string = $defn->getCSName;

Returns the string form of the token bound to this definition, taking into account
any alias for this definition.

$defn->readArguments($gullet);

Reads the arguments for this $defn from the $gullet, returning a list of
LaTeXML::Tokens.

$parameters = $defn->getParameters;

Return the LaTeXML::Parameters object representing the formal parame-
ters of the definition.

@tokens = $defn->invocation(@args);

Return the tokens that would invoke the given definition with the provided argu-
ments. This is used to recreate the TeX code (or it’s equivalent).

$defn->invoke;

Invoke the action of the $defn. For expandable definitions, this is done in the
Gullet, and returns a list of LaTeXML::Tokens. For primitives, it is carried
out in the Stomach, and returns a list of LaTeXML::Boxes. For a constructor,
it is also carried out by the Stomach, and returns a LaTeXML::Whatsit. That
whatsit will be responsible for constructing the XML document fragment, when
the LaTeXML::Document invokes $whatsit-beAbsorbed($document);>.

Primitives and Constructors also support before and after daemons, lists of sub-
routines that are executed before and after digestion. These can be useful for
changing modes, etc.

More about Primitives

Primitive definitions may have lists of daemon subroutines, beforeDigest and
afterDigest, that are executed before (and before the arguments are read) and
after digestion. These should either end with return;, (), or return a list of digested
objects (LaTeXML::Box, etc) that will be contributed to the current list.

More about Registers

Registers generally store some value in the current LaTeXML::State, but are not
required to. Like TeX’s registers, when they are digested, they expect an optional =,
and then a value of the appropriate type. Register definitions support these additional
methods:

$value = $register->valueOf(@args);

Return the value associated with the register, by invoking it’s getter function.
The additional args are used by some registers to index into a set, such as the
index to \count.

59

$register->setValue($value,@args);

Assign a value to the register, by invoking it’s setter function.

More about Constructors

A constructor has as it’s replacement a subroutine or a string pattern representing
the XML fragment it should generate. In the case of a string pattern, the pattern is com-
piled into a subroutine on first usage by the internal class LaTeXML::ConstructorCompiler.
Like primitives, constructors may have beforeDigest and afterDigest.

60 APPENDIX C. MODULES

LaTeXML::Global

Global exports used within LaTeXML, and in Packages.

Synopsis
use LaTeXML::Global;

Description
This module exports the various constants and constructors that are useful throughout
LaTeXML, and in Package implementations.

Global state

$STATE;

This is bound to the currently active LaTeXML::State by an instance of
LaTeXML during processing.

Tokens

$catcode = CC ESCAPE;

Constants for the category codes:

CC_BEGIN, CC_END, CC_MATH, CC_ALIGN, CC_EOL,
CC_PARAM, CC_SUPER, CC_SUB, CC_IGNORE,
CC_SPACE, CC_LETTER, CC_OTHER, CC_ACTIVE,
CC_COMMENT, CC_INVALID, CC_CS, CC_NOTEXPANDED.

[The last 2 are (apparent) extensions, with catcodes 16 and 17, respectively].

$token = Token($string,$cc);

Creates a LaTeXML::Token with the given content and catcode. The follow-
ing shorthand versions are also exported for convenience:

T_BEGIN, T_END, T_MATH, T_ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_LETTER($letter),
T_OTHER($char), T_ACTIVE($char),
T_COMMENT($comment), T_CS($cs)

$tokens = Tokens(@token);

Creates a LaTeXML::Tokens from a list of LaTeXML::Token’s

$tokens = Tokenize($string);

Tokenizes the $string according to the standard cattable, returning a LaTeXML::Tokens.

61

$tokens = TokenizeInternal($string);

Tokenizes the $string according to the internal cattable (where @ is a letter),
returning a LaTeXML::Tokens.

@tokens = Explode($string);

Returns a list of the tokens corresponding to the characters in $string.

StartSemiVerbatim(); ... ; EndSemiVerbatim();

Desable disable most TeX catcodes.

Numbers, etc.

$number = Number($num);

Creates a Number object representing $num.

$number = Float($num);

Creates a floating point object representing $num; This is not part of TeX, but
useful.

$dimension = Dimension($dim);

Creates a Dimension object. $num can be a string with the number and units
(with any of the usual TeX recognized units), or just a number standing for scaled
points (sp).

$mudimension = MuDimension($dim);

Creates a MuDimension object; similar to Dimension.

$glue = Glue($gluespec);

$glue = Glue($sp,$plus,$pfill,$minus,$mfill);

Creates a Glue object. $gluespec can be a string in the form that TeX recog-
nizes (number units optional plus and minus parts). Alternatively, the dimension,
plus and minus parts can be given separately: $pfill and $mfill are 0 (when
the $plus or $minus part is in sp) or 1,2,3 for fil, fill or filll.

$glue = MuGlue($gluespec);

$glue = MuGlue($sp,$plus,$pfill,$minus,$mfill);

Creates a MuGlue object, similar to Glue.

$pair = Pair($num1,$num2);

Creates an object representing a pair of numbers; Not a part of TeX, but useful
for graphical objects. The two components can be any numerical object.

$pair = PairList(@pairs);

Creates an object representing a list of pairs of numbers; Not a part of TeX, but
useful for graphical objects.

62 APPENDIX C. MODULES

Error Reporting

Fatal($message);

Signals an fatal error, printing $message along with some context. In verbose
mode a stack trace is printed.

Error($message);

Signals an error, printing $message along with some context. If in strict mode,
this is the same as Fatal(). Otherwise, it attempts to continue processing..

Warn($message);

Prints a warning message along with a short indicator of the input context, unless
verbosity is quiet.

NoteProgress($message);

Prints $message unless the verbosity level below 0.

Generic functions

Stringify($object);

Returns a short string identifying $object, for debugging. Works on any val-
ues and objects, but invokes the stringify method on blessed objects. More infor-
mative than the default perl conversion to a string.

ToString($object);

Converts $object to string; most useful for Tokens or Boxes where the string
content is desired. Works on any values and objects, but invokes the toString
method on blessed objects.

Equals($a,$b);

Compares the two objects for equality. Works on any values and objects, but
invokes the equals method on blessed objects, which does a deep comparison of
the two objects.

63

LaTeXML::Error

Internal Error reporting code.

Description
LaTeXML::Error does some simple stack analysis to generate more informative,
readable, error messages for LaTeXML. Its routines are used by the error reporting
methods from LaTeXML::Global, namely Warn, Error and Fatal.

No user serviceable parts inside. No symbols are exported.

Functions

$string = LaTeXML::Error::generateMessage($typ,$msg,$lng,@more);

Constructs an error or warning message based on the current stack and the cur-
rent location in the document. $typ is a short string characterizing the type of
message, such as ”Error”. $msg is the error message itself. If $lng is true,
will generate a more verbose message; this also uses the VERBOSITY set in the
$STATE. Longer messages will show a trace of the objects invoked on the stack,
@more are additional strings to include in the message.

$string = LaTeXML::Error::stacktrace;

Return a formatted string showing a trace of the stackframes up until this function
was invoked.

@objects = LaTeXML::Error::objectStack;

Return a list of objects invoked on the stack. This procedure only considers those
stackframes which involve methods, and the objects are those (unique) objects
that the method was called on.

64 APPENDIX C. MODULES

LaTeXML::Package

Support for package implementations and document customization.

Synopsis

This package defines and exports most of the procedures users will need to customize or
extend LaTeXML. The LaTeXML implementation of some package might look some-
thing like the following, but see the installed LaTeXML/Package directory for real-
istic examples.

use LaTeXML::Package;
use strict;
#
Load "anotherpackage"
RequirePackage(’anotherpackage’);
#
A simple macro, just like in TeX
DefMacro(’\thesection’, ’\thechapter.\roman{section}’);
#
A constructor defines how a control sequence generates XML:
DefConstructor(’\thanks{}’, "<ltx:thanks>#1</ltx:thanks>");
#
And a simple environment ...
DefEnvironment(’{abstract}’,’<abstract>#body</abstract>’);
#
A math symbol \Real to stand for the Reals:
DefMath(’\Real’, "\x{211D}", role=>’ID’);
#
Or a semantic floor:
DefMath(’\floor{}’,’\left\lfloor#1\right\rfloor’);
#
More esoteric ...
Use a RelaxNG schema
RelaxNGSchema("MySchema");
Or use a special DocType if you have to:
DocType("rootelement",
"-//Your Site//Your DocType",’your.dtd’,
prefix=>"http://whatever/");
#
Allow sometag elements to be automatically closed if needed
Tag(’prefix:sometag’, autoClose=>1);
#
Don’t forget this, so perl knows the package loaded.
1;

65

Description
To provide a LaTeXML-specific version of a LaTeX package mypackage.sty or
class myclass.cls (so that eg. \usepackage{mypackage} works), you cre-
ate the file mypackage.sty.ltxml or myclass.cls.ltxml and save it in the
searchpath (current directory, or one of the directories given to the –path option, or pos-
sibly added to the variable SEARCHPATHS). Similarly, to provide document-specific
customization for, say, mydoc.tex, you would create the file mydoc.latexml
(typically in the same directory). However, in the first cases, mypackage.sty.ltxml
are loaded instead of mypackage.sty, while a file like mydoc.latexml is loaded
in addition to mydoc.tex. In either case, you’ll use LaTeXML::Package; to
import the various declarations and defining forms that allow you to specify what
should be done with various control sequences, whether there is special treatment of
certain document elements, and so forth. Using LaTeXML::Package also imports
the functions and variables defined in LaTeXML::Global, so see that documenta-
tion as well.

Since LaTeXML attempts to mimic TeX, a familiarity with TeX’s processing model
is also helpful. Additionally, it is often useful, when implementing non-trivial be-
haviour, to think TeX-like.

Many of the following forms take code references as arguments or options. That is,
either a reference to a defined sub, \&somesub, or an anonymous function sub { ... }.
To document these cases, and the arguments that are passed in each case, we’ll use a
notation like CODE($token,..).

Control Sequences

Many of the following forms define the behaviour of control sequences. In TeX you’ll
typically only define macros. In LaTeXML, we’re effectively redefining TeX itself, so
we define macros as well as primitives, registers, constructors and environments. These
define the behaviour of these commands when processed during the various phases of
LaTeX’s immitation of TeX’s digestive tract.

The first argument to each of these defining forms (DefMacro, DefPrimive,
etc) is a prototype consisting of the control sequence being defined along with the
specification of parameters required by the control sequence. Each parameter describes
how to parse tokens following the control sequence into arguments or how to delimit
them. To simplify coding and capture common idioms in TeX/LaTeX programming,
latexml’s parameter specifications are more expressive than TeX’s \def or LaTeX’s
\newcommand. Examples of the prototypes for familiar TeX or LaTeX control se-
quences are:

DefConstructor(’\usepackage[]{}’,...
DefPrimitive(’\multiply Variable SkipKeyword:by Number’,..
DefPrimitive(’\newcommand OptionalMatch:* {Token}[][]{}’, ...

Control Sequence Parameters The general syntax for parameter for a control se-
quence is something like

66 APPENDIX C. MODULES

OpenDelim? Modifier? Type (: value (| value)*)? CloseDelim?

The enclosing delimiters, if any, are either {} or [], affect the way the argument is
delimited. With {}, a regular TeX argument (token or sequence balanced by braces)
is read before parsing according to the type (if needed). With [], a LaTeX optional
argument is read, delimited by (non-nested) square brackets.

The modifier can be either Optional or Skip, allowing the argument to be op-
tional. For Skip, no argument is contributed to the argument list.

The shorthands {} and [] default the type to Plain and reads a normal TeX argu-
ment or LaTeX default argument.

The predefined argument types are as follows.

Plain, Semiverbatim
Reads a standard TeX argument being either the next token, or if the next token
is an {, the balanced token list. In the case of Semiverbatim, many catcodes
are disabled, which is handy for URL’s, labels and similar.

Token, XToken
Read a single TeX Token. For XToken, if the next token is expandable, it is
repeatedly expanded until an unexpandable token remains, which is returned.

Number, Dimension, Glue or MuGlue
Read an Object corresponding to Number, Dimension, Glue or MuGlue, using
TeX’s rules for parsing these objects.

Until:match
Reads tokens until a match to the tokens match is found, returning the tokens
preceding the match. This corresponds to TeX delimited arguments.

UntilBrace

Reads tokens until the next open brace {. This corresponds to the peculiar TeX
construct \def\foo#{....

Match:match(|match)*, Keyword:match(|match)*
Reads tokens expecting a match to one of the token lists match, returning the
one that matches, or undef. For Keyword, case and catcode of the matches are
ignored. Additionally, any leading spaces are skipped.

Balanced

Read tokens until a closing }, but respecting nested {} pairs.

Variable

Reads a token, expanding if necessary, and expects a control sequence naming
a writable register. If such is found, it returns an array of the corresponding
definition object, and any arguments required by that definition.

SkipSpaces

Skips any space tokens, but contributes nothing to the argument list.

67

Control of Scoping Most defining commands accept an option to control how the
definition is stored, scope=>$scope, where $scope can be c<’global’>for global
definitions, ’local’, to be stored in the current stack frame, or a string naming a
scope. A scope saves a set of definitions and values that can be activated at a later time.

Particularly interesting forms of scope are those that get automatically activated
upon changes of counter and label. For example, definitions that have scope=>’section:1.1’
will be activated when the section number is ”1.1”, and will be deactivated when the
section ends.

Macros

DefMacro($prototype,$string |$tokens |$code,%options);
Defines the macro expansion for $prototype. If a $string is supplied, it
will be tokenized at definition time, and any macro arguments will be substi-
tuted for parameter indicators (eg #1) at expansion time; the result is used as
the expansion of the control sequence. The only option, other than scope, is
isConditionalwhich should be true, for conditional control sequences (TeX
uses these to keep track of conditional nesting when skipping to \else or \fi).

If defined by $code, the form is CODE($gullet,@args) and it must return
a list of LaTeXML::Token’s.

DefMacroI($cs,$paramlist,$string |$tokens |$code,%options);

Internal form of DefMacro where the control sequence and parameter list have
already been parsed; useful for definitions from within code. Also, slightly more
efficient for macros with no arguments (use undef for $paramlist).

Primitives

DefPrimitive($prototype,CODE($stomach,@args),%options);

Define a primitive control sequence. These are usually done for side effect and
so CODE should end with return;, but can also return a list of digested items.

The only option is for the special case: isPrefix=>1 is used for assignment
prefixes (like \global).

DefPrimitiveI($cs,$paramlist,CODE($stomach,@args),%options);

Internal form of DefPrimitivewhere the control sequence and parameter list
have already been parsed; useful for definitions from within code.

DefRegister($prototype,$value,%options);

Defines a register with the given initial value (a Number, Dimension, Glue,
MuGlue or Tokens — I haven’t handled Box’s yet). Usually, the $prototype
is just the control sequence, but registers are also handled by prototypes like

68 APPENDIX C. MODULES

\count{Number}. DefRegister arranges that the register value can be ac-
cessed when a numeric, dimension, ... value is being read, and also defines the
control sequence for assignment.

Options are

readonly
specifies if it is not allowed to change this value.

getter=>CODE(@args) =item setter=>CODE($value,@args)
By default the value is stored in the State’s Value table under a name con-
catenating the control sequence and argument values. These options allow
other means of fetching and storing the value.

DefRegisterI($cs,$paramlist,$value,%options);

Internal form of DefRegister where the control sequence and parameter list
have already been parsed; useful for definitions from within code.

Constructors

DefConstructor($prototype,$xmlpattern |$code,%options);
The Constructor is where LaTeXML really starts getting interesting; invoking the
control sequence will generate an arbitrary XML fragment in the document tree.
More specifically: during digestion, the arguments will be read and digested,
creating a LaTeXML::Whatsit to represent the object. During absorbtion by
the LaTeXML::Document, the Whatsit will generate the XML fragment
according to the replacement $xmlpattern, or by executing CODE.

The $xmlpattern is simply a bit of XML as a string with certain substitutions
to be made. The substitutions are of the following forms:

If code is supplied, the form is CODE($document,@args,%properties)

#1, #2 ... #name
These are replaced by the corresponding argument (for #1) or property (for
#name) stored with the Whatsit. Each are turned into a string when it ap-
pears as in an attribute position, or recursively processed when it appears
as content.

&function(@args)
Another form of substituted value is prefixed with & which invokes a func-
tion. For example, &func(#1) would invoke the function func on
the first argument to the control sequence; what it returns will be inserted
into the document.

?COND(pattern) or ?COND(ifpattern)(elsepattern)
Patterns can be conditionallized using this form. The COND is any of
the above expressions, considered true if the result is non-empty. Thus
?#1(<foo/>) would add the empty element foo if the first argument
were given.

69

ˆ

If the constuctor begins with ˆ, the XML fragment is allowed to float up
to a parent node that is allowed to contain it, according to the Document
Type.

The Whatsit property font is defined by default. Additional properties body
and trailer are defined when captureBody is true, or for environments.
By using $whatsit->setProperty(key=>$value);within afterDigest,
or by using the properties option, other properties can be added.

DefConstructor options are

mode=>(text|display math| inline math)
Changes to this mode during digestion.

bounded=>boolean
If true, TeX grouping (ie. {}) is enforced around this invocation.

requireMath=>boolean
forbidMath=>boolean

These specify whether the given constructor can only appear, or cannot
appear, in math mode.

font=>{fontspec...}
Specifies the font to be set by this invocation. See /MergeFont If
the font change is to only apply to this construct, you would also use
<bounded=1>>.

reversion=>$texstring or CODE($whatsit,#1,#2,...)
Specifies the reversion of the invocation back into TeX tokens (if the default
reversion is not appropriate). The $textstring string can include #1,#2...
The CODE is called with the $whatsit and digested arguments.

properties=>{prop=>value,...} or CODE($stomach,#1,#2...)
This option supplies additional properties to be set on the generated What-
sit. In the first form, the values can be of any type, but (1) if it is a code
references, it takes the same args ($stomach,#1,#2,...) and should return a
value. and (2) if the value is a string, occurances of #1 (etc) are replaced
by the corresponding argument. In the second form, the code should return
a hash of properties.

beforeDigest=>CODE($stomach)
This option supplies a Daemon to be executed during digestion just before
the Whatsit is created. The CODE should either return nothing (return;) or
a list of digested items (Box’s,List,Whatsit). It can thus change the State
and/or add to the digested output.

afterDigest=>CODE($stomach,$whatsit)
This option supplies a Daemon to be executed during digestion just after
the Whatsit is created. it should either return nothing (return;) or digested

http://search.cpan.org/search?query=/MergeFont&mode=module

70 APPENDIX C. MODULES

items. It can thus change the State, modify the Whatsit, and/or add to the
digested output.

beforeConstruct=>CODE($document,$whatsit)
Supplies CODE to execute before constructing the XML (generated by $re-
placement).

afterConstruct=>CODE($document,$whatsit)
Supplies CODE to execute after constructing the XML.

captureBody=>boolean or Token
if true, arbitrary following material will be accumulated into a ‘body’ until
the current grouping level is reverted, or till the Token is encountered if
the option is a Token. This body is available as the body property of the
Whatsit. This is used by environments and math.

alias=>$control sequence
Provides a control sequence to be used when reverting Whatsit’s back to
Tokens, in cases where it isn’t the command used in the $prototype.

nargs=>$nargs
This gives a number of args for cases where it can’t be infered directly from
the $prototype (eg. when more args are explictly read by Daemons).

scope=>$scope
See /scope.

DefConstructorI($cs,$paramlist,$xmlpattern |$code,%options);

Internal form of DefConstructor where the control sequence and parameter
list have already been parsed; useful for definitions from within code.

DefMath($prototype,$tex,%options);

A common shorthand constructor; it defines a control sequence that creates a
mathematical object, such as a symbol, function or operator application. The op-
tions given can effectively create semantic macros that contribute to the eventual
parsing of mathematical content. In particular, it generates an XMDual using the
replacement $tex for the presentation. The content information is drawn from
the name and options

These DefConstructor options also apply:

reversion, alias, beforeDigest, afterDigest,
beforeConstruct, afterConstruct and scope.

Additionally, it accepts

style=>astyle
adds a style attribute to the object.

http://search.cpan.org/search?query=/scope&mode=module

71

name=>aname
gives a name attribute for the object

omcd=>cdname
gives the OpenMath content dictionary that name is from.

role=>grammatical role
adds a grammatical role attribute to the object; this specifies the grammati-
cal role that the object plays in surrounding expressions. This direly needs
documentation!

font=>{fontspec}
Specifies the font to be used for when creating this object. See /MergeFont.

scriptpos=>boolean
Controls whether any sub and super-scripts will be stacked over or under
this object, or whether they will appear in the usual position.
WRONG: Redocument this!

operator role=>grammatical role

operator scriptpos=>boolean
These two are similar to role and scriptpos, but are used in unusual
cases. These apply to the given attributes to the operator token in the con-
tent branch.

nogroup=>boolean
Normally, these commands are digested with an implicit grouping around
them, so that changes to fonts, etc, are local. Providing <noggroup=1>>inhibits
this.

DefMathI($cs,$paramlist,$tex,%options);

Internal form of DefMath where the control sequence and parameter list have
already been parsed; useful for definitions from within code.

DefEnvironment($prototype,$replacement,%options);

Defines an Environment that generates a specific XML fragment. The $replacement
is of the same form as that for DefConstructor, but will generally include refer-
ence to the #body property. Upon encountering a \begin{env}: the mode
is switched, if needed, else a new group is opened; then the environment name
is noted; the beforeDigest daemon is run. Then the Whatsit representing the
begin command (but ultimately the whole environment) is created and the af-
terDigestBegin daemon is run. Next, the body will be digested and collected
until the balancing \end{env}. Then, any afterDigest daemon is run, the en-
vironment is ended, finally the mode is ended or the group is closed. The body
and \end{env} whatsit are added to the \begin{env}’s whatsit as body and
trailer, respectively.

It shares options with DefConstructor:

http://search.cpan.org/search?query=/MergeFont&mode=module

72 APPENDIX C. MODULES

mode, requireMath, forbidMath, properties, nargs,
font, beforeDigest, afterDigest, beforeConstruct,
afterConstruct and scope.

Additionally, afterDigestBegin is effectively an afterDigest for the
\begin{env} control sequence.

DefEnvironmentI($name,$paramlist,$replacement,%options);

Internal form of DefEnvironment where the control sequence and parameter
list have already been parsed; useful for definitions from within code.

Class and Packages

RequirePackage($package,%options);

Finds and loads a package implementation (usually *.sty.ltxml, unless raw
is specified) for the required $package. The options are:

type=>type specifies the file type (default sty.

options=>[...] specifies a list of package options.

raw=>1 specifies that it is allowable to try to read a raw TeX style file.

LoadClass($class,%options);

Finds and loads a class definition (usually *.cls.ltxml). The only option is

options=>[...] specifies a list of class options.

FindFile($name,%options);

Find an appropriate file with the given $name in the current directories in SEARCHPATHS.
If a file ending with .ltxml is found, it will be preferred. The options are:

type=>type specifies the file type (default sty.

raw=>1 specifies that it is allowable to try to read a raw TeX style file.

DeclareOption($option,$code);

Declares an option for the current package or class. The $code can be a string
or Tokens (which will be macro expanded), or can be a code reference which is
treated as a primitive.

If a package or class wants to accomodate options, it should start with one or
more DeclareOptions, followed by ProcessOptions().

PassOptions($name,$ext,@options);

Causes the given @options (strings) to be passed to the package (if $ext is
sty) or class (if $ext is cls) named by $name.

73

ProcessOptions();

Processes the options that have been passed to the current package or class in a
fashion similar to LaTeX. If the keyword inorder=>1 is given, the options
are processed in the order they were used, like ProcessOptions*.

ExecuteOptions(@options);

Process the options given explicitly in @options.

Counters and IDs

NewCounter($ctr,$within,%options);

Defines a new counter, like LaTeX’s \newcounter, but extended. It defines a
counter that can be used to generate reference numbers, and defines \the$ctr,
etc. It also defines an ”uncounter” which can be used to generate ID’s (xml:id)
for unnumbered objects. $ctr is the name of the counter. If defined, $within
is the name of another counter which, when incremented, will cause this counter
to be reset. The options are

idprefix Specifies a prefix to be used to generate ID’s
when using this counter

nested Not sure that this is even sane.

$num = CounterValue($ctr);

Fetches the value associated with the counter $ctr.

$tokens = StepCounter($ctr);

Analog of \stepcounter, steps the counter and returns the expansion of
\the$ctr. Usually you should use RefStepCounter($ctr) instead.

$keys = RefStepCounter($ctr);

Analog of \refstepcounter, steps the counter and returns a hash contain-
ing the keys refnum=$refnum, id=>$id>. This makes it suitable for use in a
properties option to constructors. The id is generated in parallel with the
reference number to assist debugging.

$keys = RefStepID($ctr);

Like to RefStepCounter, but only steps the ”uncounter”, and returns only
the id; This is useful for unnumbered cases of objects that normally get both a
refnum and id.

ResetCounter($ctr);

Resets the counter $ctr to zero.

74 APPENDIX C. MODULES

GenerateID($document,$node,$whatsit,$prefix);

Generates an ID for nodes during the construction phase, useful for cases where
the counter based scheme is inappropriate. The calling pattern makes it appro-
priate for use in Tag, as in Tag(’ltx:para’,sub { GenerateID(@ ,’p’); })
If $node doesn’t already have an xml:id set, it computes an appropriate id by
concatenating the xml:id of the closest ancestor with an id (if any), the prefix and
a unique counter.

Document Model

Constructors define how TeX markup will generate XML fragments, but the Document
Model is used to control exactly how those fragments are assembled.

Tag($tag,%properties);

Declares properties of elements with the name $tag.

The recognized properties are:

autoOpen=>boolean
Specifies whether this $tag can be automatically opened if needed to insert
an element that can only be contained by $tag. This property can help
match the more SGML-like LaTeX to XML.

autoClose=>boolean
Specifies whether this $tag can be automatically closed if needed to close
an ancestor node, or insert an element into an ancestor. This property can
help match the more SGML-like LaTeX to XML.

afterOpen=>CODE($document,$box)
Provides CODE to be run whenever a node with this $tag is opened. It
is called with the document being constructed, and the initiating digested
object as arguments. It is called after the node has been created, and after
any initial attributes due to the constructor (passed to openElement) are
added.

afterClose=>CODE($document,$box)
Provides CODE to be run whenever a node with this $tag is closed. It
is called with the document being constructed, and the initiating digested
object as arguments.

RelaxNGSchema($schemaname);

Specifies the schema to use for determining document model. You can leave off
the extension; it will look for .rng, and maybe eventually, .rnc once that is
implemented.

RegisterNamespace($prefix,$URL);

Declares the $prefix to be associated with the given $URL. These prefixes
may be used in ltxml files, particularly for constructors, xpath expressions, etc.

75

They are not necessarily the same as the prefixes that will be used in the gener-
ated document (See DocType).

DocType($rootelement,$publicid,$systemid,%namespaces);

Declares the expected rootelement, the public and system ID’s of the document
type to be used in the final document. The hash %namespaces specifies the
namespaces prefixes that are expected to be found in the DTD, along with each
associated namespace URI. Use the prefix #default for the default namespace
(ie. the namespace of non-prefixed elements in the DTD).

The prefixes defined for the DTD may be different from the prefixes used in im-
plementation CODE (eg. in ltxml files; see RegisterNamespace). The generated
document will use the namespaces and prefixes defined for the DTD.

Document Rewriting

During document construction, as each node gets closed, the text content gets sim-
plfied. We’ll call it applying ligatures, for lack of a better name.

DefLigature($regexp,%options);

Apply the regular expression (given as a string: ”/fa/fa/” since it will be converted
internally to a true regexp), to the text content. The only option is fontTest=CODE($font);
if given, then the substitution is applied only when fontTest returns true.

Predefined Ligatures combine sequences of ”.” or single-quotes into appropriate
Unicode characters.

DefMathLigature(CODE($document,@nodes));

CODE is called on each sequence of math nodes at a given level. If they should
be replaced, return a list of ($n,$string,%attributes) to replace the
text content of the first node with $string content and add the given attributes.
The next $n-1 nodes are removed. If no replacement is called for, CODE should
return undef.

Predefined Math Ligatures combine letter or digit Math Tokens (XMTok) into
multicharacter symbols or numbers, depending on the font (non math italic).

After document construction, various rewriting and augmenting of the document
can take place.

DefRewrite(%specification);

DefMathRewrite(%specification);

These two declarations define document rewrite rules that are applied to the doc-
ument tree after it has been constructed, but before math parsing, or any other
postprocessing, is done. The %specification consists of a seqeuence of
key/value pairs with the initial specs successively narrowing the selection of doc-
ument nodes, and the remaining specs indicating how to modify or replace the
selected nodes.

The following select portions of the document:

76 APPENDIX C. MODULES

label =>$label
Selects the part of the document with label=$label

scope =>$scope
The $scope could be ”label:foo” or ”section:1.2.3” or something similar.
These select a subtree labelled ’foo’, or a section with reference number
”1.2.3”

xpath =>$xpath
Select those nodes matching an explicit xpath expression.

match =>$TeX
Selects nodes that look like what the processing of $TeX would produce.

regexp=>$regexp
Selects text nodes that match the regular expression.

The following act upon the selected node:

attributes =>$hash
Adds the attributes given in the hash reference to the node.

replace =>$replacement
Interprets the $replacement as TeX code to generate nodes that will replace
the selected nodes.

Mid-Level support

$tokens = Expand($tokens);

Expands the given $tokens according to current definitions.

$boxes = Digest($tokens);

Processes and digestes the $tokens. Any arguments needed by control se-
quences in $tokens must be contained within the $tokens itself.

@tokens = Invocation($cs,@args);

Constructs a sequence of tokens that would invoke the token $cs on the argu-
ments.

RawTeX(’... tex code ...’);

RawTeX is a convenience function for including chunks of raw TeX (or LaTeX)
code in a Package implementation. It is useful for copying portions of the normal
implementation that can be handled simply using macros and primitives.

Let($token1,$token2);

Gives $token1 the same ‘meaning’ (definition) as $token2; like TeX’s \let.

77

Argument Readers

ReadParameters($gullet,$spec);

Reads from $gullet the tokens corresponding to $spec (a Parameters ob-
ject).

DefParameterType($type,CODE($gullet,@values),%options);

Defines a new Parameter type, $type, with CODE for its reader.

Options are:

reversion=>CODE($arg,@values);
This CODE is responsible for converting a previously parsed argument
back into a sequence of Token’s.

optional=>boolean
whether it is an error if no matching input is found.

novalue=>boolean
whether the value returned should contribute to argument lists, or simply
be passed over.

semiverbatim=>boolean
whether the catcode table should be modified before reading tokens.

DefColumnType($proto,$expansion);

Defines a new column type for tabular and arrays. $proto is the prototype for
the pattern, analogous to the pattern used for other definitions, except that macro
being defined is a single character. The $expansion is a string specifying
what it should expand into, typically more verbose column specification.

Access to State

$value = LookupValue($name);

Lookup the current value associated with the the string $name.

AssignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the given
scoping rule.

Values are also used to specify most configuration parameters (which can there-
for also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the

78 APPENDIX C. MODULES

source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

PushValue($type,$name,@values);

This is like AssignValue, but pushes values onto the end of the value, which
should be a LIST reference. Scoping is not handled here (yet?), it simply pushes
the value onto the last binding of $name.

UnshiftValue($type,$name,@values);

Similar to PushValue, but pushes a value onto the front of the values, which
should be a LIST reference.

$value = LookupCatcode($char);

Lookup the current catcode associated with the the character $char.

AssignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made according
to the given scoping rule.

This method is also used to specify whether a given character is active in math
mode, by using math:$char for the character, and using a value of 1 to specify
that it is active.

$meaning = LookupMeaning($token);

Looks up the current meaning of the given $token which may be a Definition,
another token, or the token itself if it has not otherwise been defined.

$defn = LookupDefinition($token);

Looks up the current definition, if any, of the $token.

InstallDefinition($defn);

Install the Definition $defn into $STATE under its control sequence.

Low-level Functions

CleanLabel($label,$prefix);

Cleans a $label of disallowed characters, prepending $prefix (or LABEL,
if none given).

CleanIndexKey($key);

Cleans an index key, so it can be used as an ID.

79

CleanBibKey($key);

Cleans a bibliographic citation key, so it can be used as an ID.

CleanURL($url);

Cleans a url.

UTF($code);

Generates a UTF character, handy for the the 8 bit characters. For example,
UTF(0xA0) generates the non-breaking space.

MergeFont(%style);

Set the current font by merging the font style attributes with the current font. The
attributes and likely values (the values aren’t required to be in this set):

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : tiny, footnote, small, normal, large,

Large, LARGE, huge, Huge
color : any named color, default is black

Some families will only be used in math. This function returns nothing so it can
be easily used in beforeDigest, afterDigest.

@tokens = roman($number);

Formats the $number in (lowercase) roman numerals, returning a list of the
tokens.

@tokens = Roman($number);

Formats the $number in (uppercase) roman numerals, returning a list of the
tokens.

80 APPENDIX C. MODULES

LaTeXML::Parameters

Formal parameters, including LaTeXML::Parameter.

Description

Provides a representation for the formal parameters of LaTeXML::Definitions:

LaTeXML::Parameter

represents an individual parameter.

Parameters Methods

$parameters = parseParameters($prototype,$for);

Parses a string for a sequence of parameter specifications. Each specification
should be of the form

{} reads a regular TeX argument, a sequence of
tokens delimited by braces, or a single token.

{spec} reads a regular TeX argument, then reparses it
to match the given spec. The spec is parsed
recursively, but usually should correspond to
a single argument.

[spec] reads an LaTeX-style optional argument. If the
spec is of the form Default:stuff, then stuff
would be the default value.

Type Reads an argument of the given type, where either
Type has been declared, or there exists a ReadType
function accessible from LaTeXML::Package::Pool.

Type:value, or Type:value1:value2... These forms
pass additional Tokens to the reader function.

OptionalType Similar to Type, but it is not considered
an error if the reader returns undef.

SkipType Similar to OptionalType, but the value returned
from the reader is ignored, and does not occupy a
position in the arguments list.

@parameters = $parameters->getParameters;

Return the list of LaTeXML::Parameter contained in $parameters.

@tokens = $parameters->revertArguments(@args);

Return a list of LaTeXML::Token that would represent the arguments such
that they can be parsed by the Gullet.

81

@args = $parameters->readArguments($gullet,$fordefn);

Read the arguments according to this $parameters from the $gullet. This
takes into account any special forms of arguments, such as optional, delimited,
etc.

@args = $parameters->readArgumentsAndDigest($stomach,$fordefn);

Reads and digests the arguments according to this $parameters, in sequence.
this method is used by Constructors.

82 APPENDIX C. MODULES

LaTeXML::State

Stores the current state of processing.

Description
A LaTeXML::State object stores the current state of processing. It recording cat-
codes, variables values, definitions and so forth, as well as mimicing TeX’s scoping
rules.

Access to State and Processing

$STATE->getStomach;

Returns the current Stomach used for digestion.

$STATE->getModel;

Returns the current Model representing the document model.

Scoping

The assignment methods, described below, generally take a $scope argument, which
determines how the assignment is made. The allowed values and thier implications are:

global : global assignment.
local : local assignment, within the current grouping.
undef : global if \global preceded, else local (default)
<name> : stores the assignment in a ‘scope’ which

can be loaded later.

If no scoping is specified, then the assignment will be global if a preceding \global
has set the global flag, otherwise the value will be assigned within the current grouping.

$STATE->pushFrame;

Starts a new level of grouping. Note that this is lower level than \bgroup; See
LaTeXML::Stomach.

$STATE->popFrame;

Ends the current level of grouping. Note that this is lower level than \egroup;
See LaTeXML::Stomach.

$STATE->setPrefix($prefix);

Sets a prefix (eg. global for \global, etc) for the next operation, if applica-
ble.

$STATE->clearPrefixes;

Clears any prefixes.

83

Values

$value = $STATE->lookupValue($name);

Lookup the current value associated with the the string $name.

$STATE->assignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the given
scoping rule.

Values are also used to specify most configuration parameters (which can there-
for also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the
source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

$STATE->pushValue($name,$value);

This is like ->assign, but pushes a value onto the end of the stored value,
which should be a LIST reference. Scoping is not handled here (yet?), it simply
pushes the value onto the last binding of $name.

$boole = $STATE->isValuebound($type,$name,$frame);

Returns whether the value $name is bound. If $frame is given, check whether
it is bound in the $frame-th frame, with 0 being the top frame.

Category Codes

$value = $STATE->lookupCatcode($char);

Lookup the current catcode associated with the the character $char.

$STATE->assignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made according
to the given scoping rule.

This method is also used to specify whether a given character is active in math
mode, by using math:$char for the character, and using a value of 1 to specify
that it is active.

84 APPENDIX C. MODULES

Definitions

$defn = $STATE->lookupMeaning($token);

Get the ”meaning” currently associated with $token, either the definition (if
it is a control sequence or active character) or the token itself if it shouldn’t be
executable. (See LaTeXML::Definition)

$STATE->assignMeaning($token,$defn,$scope);

Set the definition associated with $token to $defn. If $globally is true, it
makes this the global definition rather than bound within the current group. (See
LaTeXML::Definition, and LaTeXML::Package)

$STATE->installDefinition($definition, $scope);

Install the definition into the current stack frame under its normal control se-
quence.

Named Scopes

Named scopes can be used to set variables or redefine control sequences within a scope
other than the standard TeX grouping. For example, the LaTeX implementation will
automatically activate any definitions that were defined with a named scope of, say
”section:4”, during the portion of the document that has the section counter equal to
4. Similarly, a scope named ”label:foo” will be activated in portions of the document
where \label{foo} is in effect.

$STATE->activateScope($scope);

Installs any definitions that were associated with the named $scope. Note that
these are placed in the current grouping frame and will disappear when that
grouping ends.

$STATE->deactivateScope($scope);

Removes any definitions that were associated with the named $scope. Nor-
mally not needed, since a scopes definitions are locally bound anyway.

$sp = $STATE->convertUnit($unit);

Converts a TeX unit of the form ’10em’ (or whatever TeX unit) into scaled
points. (Defined here since in principle it could track the size of ems and so forth
(but currently doesn’t))

85

LaTeXML::Token

Representation of a token, and LaTeXML::Tokens, representing lists of tokens.

Description
This module defines Tokens (LaTeXML::Token, LaTeXML::Tokens) that get
created during tokenization and expansion.

A LaTeXML::Token represents a TeX token which is a pair of a character or
string and a category code. A LaTeXML::Tokens is a list of tokens (and also imple-
ments the API of a LaTeXML::Mouth so that tokens can be read from a list).

Common methods

The following methods apply to all objects.

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

Token methods

The following methods are specific to LaTeXML::Token.

$string = $token->getCSName;

Return the string or character part of the $token; for the special category codes,
returns the standard string (eg. T BEGIN-getCSName>returns ”{”).

$string = $token->getString;

Return the string or character part of the $token.

$code = $token->getCharcode;

Return the character code of the character part of the $token, or 256 if it is a
control sequence.

$code = $token->getCatcode;

Return the catcode of the $token.

Tokens methods

The following methods are specific to LaTeXML::Tokens.

$tokenscopy = $tokens->clone;

Return a shallow copy of the $tokens. This is useful before reading from a
LaTeXML::Tokens.

86 APPENDIX C. MODULES

$token = $tokens->readToken;

Returns (and remove) the next token from $tokens. This is part of the public
API of LaTeXML::Mouth so that a LaTeXML::Tokens can serve as a
LaTeXML::Mouth.

87

LaTeXML::Box

Representations of digested objects.

Description
These represent various kinds of digested objects

LaTeXML::Box

represents text in a particular font;

LaTeXML::MathBox

represents a math token in a particular font;

LaTeXML::List

represents a sequence of digested things in text;

LaTeXML::MathList

represents a sequence of digested things in math;

LaTeXML::Whatsit

represents a digested object that can generate arbitrary elements in the XML
Document.

Common Methods

All these classes extend LaTeXML::Object and so implement the stringify
and equals operations.

$font = $digested->getFont;

Returns the font used by $digested.

$boole = $digested->isMath;

Returns whether $digested was created in math mode.

@boxes = $digested->unlist;

Returns a list of the boxes contained in $digested. It is also defined for the
Boxes and Whatsit (which just return themselves) so they can stand-in for a List.

$string = $digested->toString;

Returns a string representing this $digested.

$string = $digested->revert;

Reverts the box to the list of Tokens that created (or could have created) it.

$string = $digested->getLocator;

Get a string describing the location in the original source that gave rise to $digested.

88 APPENDIX C. MODULES

$digested->beAbsorbed($document);

$digested should get itself absorbed into the $document in whatever way
is apppropriate.

Box Methods

The following methods are specific to LaTeXML::Box and LaTeXML::MathBox.

$string = $box->getString;

Returns the string part of the $box.

Whatsit Methods

Note that the font is stored in the data properties under ’font’.

$defn = $whatsit->getDefinition;

Returns the LaTeXML::Definition responsible for creating $whatsit.

$value = $whatsit->getProperty($key);

Returns the value associated with $key in the $whatsit’s property list.

$whatsit->setProperty($key,$value);

Sets the $value associated with the $key in the $whatsit’s property list.

$props = $whatsit->getProperties();

Returns the hash of properties stored on this Whatsit. (Note that this hash is
modifiable).

$props = $whatsit->setProperties(%keysvalues);

Sets several properties, like setProperty.

$list = $whatsit->getArg($n);

Returns the $n-th argument (starting from 1) for this $whatsit.

@args = $whatsit->getArgs;

Returns the list of arguments for this $whatsit.

$whatsit->setArgs(@args);

Sets the list of arguments for this $whatsit to @args (each arg should be a
LaTeXML::List or LaTeXML::MathList).

$list = $whatsit->getBody;

Return the body for this $whatsit. This is only defined for environments or
top-level math formula. The body is stored in the properties under ’body’.

89

$whatsit->setBody(@body);

Sets the body of the $whatsit to the boxes in @body. The last $box in
@body is assumed to represent the ‘trailer’, that is the result of the invocation
that closed the environment or math. It is stored separately in the properties
under ’trailer’.

$list = $whatsit->getTrailer;

Return the trailer for this $whatsit. See setBody.

90 APPENDIX C. MODULES

LaTeXML::Number

Representation of numbers, dimensions, skips and glue.

Description
This module defines various dimension and number-like data objects

LaTeXML::Number

represents numbers,

LaTeXML::Float

represents floating-point numbers,

LaTeXML::Dimension

represents dimensions,

LaTeXML::MuDimension

represents math dimensions,

LaTeXML::Glue

represents glue (skips),

LaTeXML::MuGlue

represents math glue,

LaTeXML::Pair

represents pairs of numbers

LaTeXML::Pairlist

represents list of pairs.

Common methods

The following methods apply to all objects.

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

$string = $object->ptValue;

Return a value representing $object without the measurement unit (pt) with
limited decimal places.

91

Numerics methods

These methods apply to the various numeric objects

$n = $object->valueOf;

Return the value in scaled points (ignoring shrink and stretch, if any).

$n = $object->smaller($other);

Return $object or $other, whichever is smaller

$n = $object->larger($other);

Return $object or $other, whichever is larger

$n = $object->absolute;

Return an object representing the absolute value of the $object.

$n = $object->sign;

Return an integer: -1 for negatives, 0 for 0 and 1 for positives

$n = $object->negate;

Return an object representing the negative of the $object.

$n = $object->add($other);

Return an object representing the sum of $object and $other

$n = $object->subtract($other);

Return an object representing the difference between $object and $other

$n = $object->multiply($n);

Return an object representing the product of $object and $n (a regular num-
ber).

92 APPENDIX C. MODULES

LaTeXML::Font

Representation of fonts, along with the specialization LaTeXML::MathFont.

Description
This module defines Font objects. I’m not completely happy with the arrangement, or
maybe just the use of it, so I’m not going to document extensively at this point.

LaTeXML::Font and LaTeXML::MathFont represent fonts (the latter, fonts
in math-mode, obviously) in LaTeXML.

The attributes are

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : tiny, footnote, small, normal, large,

Large, LARGE, huge, Huge
color : any named color, default is black

They are usually merged against the current font, attempting to mimic the, some-
times counter-intuitive, way that TeX does it, particularly for math

LaTeXML::MathFont

LaTeXML::MathFont supports $font-specialize($string);>for computing a font
reflecting how the specific $string would be printed when $font is active; This
(attempts to) handle the curious ways that lower case greek often doesn’t get a different
font. In particular, it recognizes the following classes of strings: single latin letter,
single uppercase greek character, single lowercase greek character, digits, and others.

93

LaTeXML::Mouth

Tokenize the input.

Description
A LaTeXML::Mouth (and subclasses) is responsible for tokenizing, ie. converting
plain text and strings into LaTeXML::Tokens according to the current category
codes (catcodes) stored in the LaTeXML::State.

LaTeXML::FileMouth

specializes LaTeXML::Mouth to tokenize from a file.

LaTeXML::StyleMouth

further specializes LaTeXML::FileMouth for processing style files, setting
the catcode for @ and ignoring comments.

LaTeXML::PerlMouth

is not really a Mouth in the above sense, but is used to definitions from perl
modules with exensions .ltxml and .latexml.

Creating Mouths

$mouth = LaTeXML::Mouth->new($string);

Creates a new Mouth reading from $string.

$mouth = LaTeXML::FileMouth->new($pathname);

Creates a new FileMouth to read from the given file.

$mouth = LaTeXML::StyleMouth->new($pathname);

Creates a new StyleMouth to read from the given style file.

Methods

$token = $mouth->readToken;

Returns the next LaTeXML::Token from the source.

$boole = $mouth->hasMoreInput;

Returns whether there is more data to read.

$string = $mouth->getLocator($long);

Return a description of current position in the source, for reporting errors.

$tokens = $mouth->readTokens($until);

Reads tokens until one matches $until (comparing the character, but not cat-
code). This is useful for the \verb command.

94 APPENDIX C. MODULES

$lines = $mouth->readRawLines($endline,$exact);

Reads raw (untokenized) lines from $mouth until a line matching $endline
is found. If $exact is true, $endline is matched exactly, with no leading or
trailing data (like in the c<comment>package). Otherwise, the match is done
like with the c<verbatim>environment; any text preceding $endline is re-
turned as the last line, and any characters after $endline remains in the mouth
to be tokenized.

95

LaTeXML::Gullet

Expands expandable tokens and parses common token sequences.

Description

A LaTeXML::Gullet reads tokens (LaTeXML::Token) from a LaTeXML::Mouth.
It is responsible for expanding macros and expandable control sequences, if the current
definition associated with the token in the LaTeXML::State is an LaTeXML::Expandable
definition. The LaTeXML::Gullet also provides a variety of methods for reading
various types of input such as arguments, optional arguments, as well as for parsing
LaTeXML::Number, LaTeXML::Dimension, etc, according to TeX’s rules.

Managing Input

$gullet->input($name,$types,%options);

Input the file named $name; Searches for matching files in the current searchpath
with an extension being one of $types (an array of strings). If the found file
has a perl extension (pm, ltxml, or latexml), it will be executed (loaded). If the
found file has a TeX extension (tex, sty, cls) it will be opened and latexml will
prepare to read from it.

$gullet->openMouth($mouth, $noautoclose);

Is this public? Prepares to read tokens from $mouth. If $noautoclose is true,
the Mouth will not be automatically closed when it is exhausted.

$gullet->closeMouth;

Is this public? Finishes reading from the current mouth, and reverts to the one in
effect before the last openMouth.

$gullet->flush;

Is this public? Clears all inputs.

$gullet->getLocator;

Returns a string describing the current location in the input stream.

Low-level methods

$tokens = $gullet->expandTokens($tokens);

Return the LaTeXML::Tokens resulting from expanding all the tokens in
$tokens. This is actually only used in a few circumstances where the argu-
ments to an expandable need explicit expansion; usually expansion happens at
the right time.

96 APPENDIX C. MODULES

@tokens = $gullet->neutralizeTokens(@tokens);

Another unusual method: Used for things like \edef and token registers, to in-
hibit further expansion of control sequences and proper spawning of register
tokens.

$token = $gullet->readToken;

Return the next token from the input source, or undef if there is no more input.

$token = $gullet->readXToken($toplevel);

Return the next unexpandable token from the input source, or undef if there is
no more input. If the next token is expandable, it is expanded, and its expansion
is reinserted into the input.

$gullet->unread(@tokens);

Push the @tokens back into the input stream to be re-read.

Mid-level methods

$token = $gullet->readNonSpace;

Read and return the next non-space token from the input after discarding any
spaces.

$gullet->skipSpaces;

Skip the next spaces from the input.

$gullet->skip1Space;

Skip the next token from the input if it is a space.

$tokens = $gullet->readBalanced;

Read a sequence of tokens from the input until the balancing ’}’ (assuming the
’{’ has already been read). Returns a LaTeXML::Tokens.

$boole = $gullet->ifNext($token);

Returns true if the next token in the input matches $token; the possibly match-
ing token remains in the input.

$tokens = $gullet->readMatch(@choices);

Read and return whichever of @choices (each are LaTeXML::Tokens)
matches the input, or undef if none do.

$keyword = $gullet->readKeyword(@keywords);

Read and return whichever of @keywords (each a string) matches the input, or
undef if none do. This is similar to readMatch, but case and catcodes are ignored.
Also, leading spaces are skipped.

97

$tokens = $gullet->readUntil(@delims);

Read and return a (balanced) sequence of LaTeXML::Tokens until matching
one of the tokens in @delims. In a list context, it also returns which of the
delimiters ended the sequence.

High-level methods

$tokens = $gullet->readArg;

Read and return a TeX argument; the next Token or Tokens (if surrounded by
braces).

$tokens = $gullet->readOptional($default);

Read and return a LaTeX optional argument; returns $default if there is no
’[’, otherwise the contents of the [].

$thing = $gullet->readValue($type);

Reads an argument of a given type: one of ’Number’, ’Dimension’, ’Glue’,
’MuGlue’ or ’any’.

$value = $gullet->readRegisterValue($type);

Read a control sequence token (and possibly it’s arguments) that names a register,
and return the value. Returns undef if the next token isn’t such a register.

$number = $gullet->readNumber;

Read a LaTeXML::Number according to TeX’s rules of the various things
that can be used as a numerical value.

$dimension = $gullet->readDimension;

Read a LaTeXML::Dimension according to TeX’s rules of the various
things that can be used as a dimension value.

$mudimension = $gullet->readMuDimension;

Read a LaTeXML::MuDimension according to TeX’s rules of the various
things that can be used as a mudimension value.

$glue = $gullet->readGlue;

Read a LaTeXML::Glue according to TeX’s rules of the various things that
can be used as a glue value.

$muglue = $gullet->readMuGlue;

Read a LaTeXML::MuGlue according to TeX’s rules of the various things
that can be used as a muglue value.

98 APPENDIX C. MODULES

LaTeXML::Stomach

Digests tokens into boxes, lists, etc.

Description
LaTeXML::Stomach digests tokens read from a LaTeXML::Gullet (they will
have already been expanded).

There are basically four cases when digesting a LaTeXML::Token:

A plain character
is simply converted to a LaTeXML::Box (or LaTeXML::MathBox in math
mode), recording the current LaTeXML::Font.

A primitive
If a control sequence represents LaTeXML::Primitive, the primitive is
invoked, executing its stored subroutine. This is typically done for side effect
(changing the state in the LaTeXML::State), although they may also con-
tribute digested material. As with macros, any arguments to the primitive are
read from the LaTeXML::Gullet.

Grouping (or environment bodies)
are collected into a LaTeXML::List.

Constructors
A special class of control sequence, called a LaTeXML::Constructor pro-
duces a LaTeXML::Whatsit which remembers the control sequence and
arguments that created it, and defines its own translation into XML elements, at-
tributes and data. Arguments to a constructor are read from the gullet and also
digested.

Digestion

$list = $stomach->digestNextBody;

Return the digested LaTeXML::List after reading and digesting a ‘body’
from the its Gullet. The body extends until the current level of boxing or envi-
ronment is closed.

$list = $stomach->digest($tokens);

Return the LaTeXML::List resuting from digesting the given tokens. This
is typically used to digest arguments to primitives or constructors.

@boxes = $stomach->invokeToken($token);

Invoke the given (expanded) token. If it corresponds to a Primitive or Construc-
tor, the definition will be invoked, reading any needed arguments fromt he cur-
rent input source. Otherwise, the token will be digested. A List of Box’s, Lists,
Whatsit’s is returned.

99

@boxes = $stomach->regurgitate;

Removes and returns a list of the boxes already digested at the current level. This
peculiar beast is used by things like \choose (which is a Primitive in TeX, but a
Constructor in LaTeXML).

Grouping

$stomach->bgroup;

Begin a new level of binding by pushing a new stack frame, and a new level of
boxing the digested output.

$stomach->egroup;

End a level of binding by popping the last stack frame, undoing whatever bind-
ings appeared there, and also decrementing the level of boxing.

$stomach->begingroup;

Begin a new level of binding by pushing a new stack frame.

$stomach->endgroup;

End a level of binding by popping the last stack frame, undoing whatever bind-
ings appeared there.

Modes

$stomach->beginMode($mode);

Begin processing in $mode; one of ’text’, ’display-math’ or ’inline-math’. This
also begins a new level of grouping and switches to a font appropriate for the
mode.

$stomach->endMode($mode);

End processing in $mode; an error is signalled if $stomach is not currently in
$mode. This also ends a level of grouping.

100 APPENDIX C. MODULES

LaTeXML::Document

Represents an XML document under construction.

Description

A LaTeXML::Document constructs an XML document by absorbing the digested
LaTeXML::List (from a LaTeXML::Stomach), Generally, the LaTeXML::Boxs
and LaTeXML::Lists create text nodes, whereas the LaTeXML::Whatsits
create XML document fragments, elements and attributes according to the defining
LaTeXML::Constructor.

The LaTeXML::Document maintains a current insertion point for where mate-
rial will be added. The LaTeXML::Model, derived from various declarations and
document type, is consulted to determine whether an insertion is allowed and when
elements may need to be automatically opened or closed in order to carry out a given
insertion. For example, a subsection element will typically be closed automatically
when it is attempted to open a section element.

In the methods described here, the term $qname is used for XML qualified names.
These are tag names with a namespace prefix. The prefix should be one registered with
the current Model, for use within the code. This prefix is not necessarily the same as
the one used in any DTD, but should be mapped to the a Namespace URI that was
registered for the DTD.

The arguments named $node are an XML::LibXML node.

Accessors

$doc = $document->getDocument;

Returns the XML::LibXML::Document currently being constructed.

$node = $document->getNode;

Returns the node at the current insertion point during construction. This node is
considered still to be ‘open’; any insertions will go into it (if possible). The node
will be an XML::LibXML::Element, XML::LibXML::Text or, initially,
XML::LibXML::Document.

$node = $document->getElement;

Returns the closest ancestor to the current insertion point that is an Element.

$document->setNode($node);

Sets the current insertion point to be $node. This should be rarely used, if at all;
The construction methods of document generally maintain the notion of insertion
point automatically. This may be useful to allow insertion into a different part
of the document, but you probably want to set the insertion point back to the
previous node, afterwards.

101

Construction Methods

$document->absorb($digested);

Absorb the $digested object into the document at the current insertion point
according to its type. Various of the the other methods are invoked as needed,
and document nodes may be automatically opened or closed according to the
document model.

$xmldoc = $document->finalize;

This method finalizes the document by cleaning up various temporary attributes,
and returns the XML::LibXML::Document that was constructed.

$document->openText($text,$font);

Open a text node in font $font, performing any required automatic opening
and closing of intermedate nodes (including those needed for font changes) and
inserting the string $text into it.

$document->insertMathToken($string,%attributes);

Insert a math token (XMTok) containing the string $string with the given at-
tributes. Useful attributes would be name, role, font. Returns the newly inserted
node.

$document->openElement($qname,%attributes);

Open an element, named $qname and with the given attributes. This will be
inserted into the current node while performing any required automatic open-
ing and closing of intermedate nodes. The new element is returned, and also
becomes the current insertion point. An error (fatal if in Strict mode) is sig-
nalled if there is no allowed way to insert such an element into the current node.

$document->closeElement($qname);

Close the closest open element named $qname including any intermedate nodes
that may be automatically closed. If that is not possible, signal an error. The
closed node’s parent becomes the current node. This method returns the closed
node.

$node = $document->isOpenable($qname);

Check whether it is possible to open a $qname element at the current insertion
point.

$node = $document->isCloseable($qname);

Check whether it is possible to close a $qname element, returning the node that
would be closed if possible, otherwise undef.

$document->maybeCloseElement($qname);

Close a $qname element, if it is possible to do so, returns the closed node if it
was found, else undef.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

102 APPENDIX C. MODULES

$document->insertElement($qname,$content,%attributes);

This is a shorthand for creating an element $qname (with given attributes),
absorbing $content from within that new node, and then closing it. The
$content must be digested material, either a single box, or an array of boxes.
This method returns the newly created node, although it will no longer be the
current insertion point.

$document->insertComment($text);

Insert, and return, a comment with the given $text into the current node.

$document->insertPI($op,%attributes);

Insert, and return, a ProcessingInstruction into the current node.

$document->addAttribute($key=>$value);

Add the given attribute to the nearest node that is allowed to have it.

103

LaTeXML::Model

Represents the Document Model

Description
LaTeXML::Model encapsulates information about the document model to be used in
converting a digested document into XML by the LaTeXML::Document. This in-
formation is based on the document schema (eg, DTD, RelaxNG), but is also modified
by package modules; thus the model may not be complete until digestion is completed.

The kinds of information that is relevant is not only the content model (what each
element can contain contain), but also SGML-like information such as whether an el-
ement can be implicitly opened or closed, if needed to insert a new element into the
document.

Currently, only an approximation to the schema is understood and used. For exam-
ple, we only record that certain elements can appear within another; we don’t preserve
any information about required order or number of instances.

Model Creation

$model = LaTeXML::Model->new(%options);

Creates a new model. The only useful option is permissive=>1 which ig-
nores any DTD and allows the document to be built without following any par-
ticular content model.

Document Type

$model->setDocType($rootname,$publicid,$systemid,%namespaces);

Declares the expected rootelement, the public and system ID’s of the document
type to be used in the final document. The hash %namespaces specifies the
namespace prefixes that are expected to be found in the DTD, along with the
associated namespace URI. These prefixes may be different from the prefixes
used in implementation code (eg. in ltxml files; see RegisterNamespace). The
generated document will use the namespaces and prefixes defined here.

Namespaces

Note that there are two namespace mappings between namespace URIs and prefixes
that are relevant to LaTeXML. The ‘code’ mapping is the one used in code implement-
ing packages, and in particular, constructors defined within those packages. The prefix
ltx is used consistently to refer to LaTeXML’s own namespace (http://dlmf.nist.gov/LaTeXML).

The other mapping, the ‘document’ mapping, is used in the created document; this
may be different from the ‘code’ mapping in order to accommodate DTDs, for example,
or for use by other applications that expect a rigid namespace mapping.

104 APPENDIX C. MODULES

$model->registerNamespace($prefix,$namespace url);

Register $prefix to stand for the namespace $namespace url. This prefix
can then be used to create nodes in constructors and Document methods. It will
also be recognized in XPath expressions.

$model->getNamespacePrefix($namespace);

Return the prefix to use for the given $namespace.

$model->getNamespace($prefix);

Return the namespace url for the given $prefix.

Model queries

$boole = $model->canContain($tag,$childtag);

Returns whether an element with qualified name $tag can contain an element
with qualified name $childtag. The tag names #PCDATA, #Document, #Com-
ment and #ProcessingInstruction are specially recognized.

$auto = $model->canContainIndirect($tag,$childtag);

Checks whether an element with qualified name $tag could contain an element
with qualified name $childtag, provided an ‘autoOpen’able element $auto
were inserted in $tag.

$boole = $model->canContainSomehow($tag,$childtag);

Returns whether an element with qualified name $tag could contain an element
with qualified name $childtag, either directly or indirectly.

$boole = $model->canAutoClose($tag);

Returns whether an element with qualified name $tag is allowed to be closed
automatically, if needed.

$boole = $model->canHaveAttribute($tag,$attribute);

Returns whether an element with qualified name $tag is allowed to have an
attribute with the given name.

Tag Properties

$value = $model->getTagProperty($tag,$property);

Gets the value of the $property associated with the qualified name $tag Known
properties are:

autoOpen : This asserts that the tag is allowed to
be opened automatically if needed to
insert some other element. If not set,
the tag can only be opened explicitly.

105

autoClose : This asserts that the $tag is allowed to
be closed automatically if needed to
insert some other element. If not set,
the tag can only be closed explicitly.

afterOpen : supplies code to be executed whenever
an element of this type is opened. It
is called with the created node and the
responsible digested object as arguments.

afterClose : supplies code to be executed whenever
an element of this type is closed. It
is called with the created node and the
responsible digested object as arguments.

$model->setTagProperty($tag,$property,$value);

sets the value of the $property associated with the qualified name $tag to
$value.

Rewrite Rules

$model->addRewriteRule($mode,@specs);

Install a new rewrite rule with the given @specs to be used in $mode (being
either math or text). See LaTeXML::Rewrite for a description of the
specifications.

$model->applyRewrites($document,$node,$until rule);

Apply all matching rewrite rules to $node in the given document. If $until rule
is define, apply all those rules that were defined before it, otherwise, all rules

106 APPENDIX C. MODULES

LaTeXML::Rewrite

Rewrite rules for modifying the XML document.

Description
LaTeXML::Rewrite implements rewrite rules for modifying the XML document.

Methods

$rule->rewrite($document,$node);

107

LaTeXML::MathParser

Parses mathematics content

Description

LaTeXML::MathParser parses the mathematical content of a document. It uses
Parse::RecDescent and a grammar MathGrammar.

Math Representation

Needs description.

Possibile Customizations

Needs description.

Convenience functions

The following functions are exported for convenience in writing the grammar produc-
tions.

$node = New($name,$content,%attributes);

Creates a new XMTok node with given $name (a string or undef), and $content
(a string or undef) (but at least one of name or content should be provided), and
attributes.

$node = Arg($node,$n);

Returns the $n-th argument of an XMApp node; 0 is the operator node.

Annotate($node,%attributes);

Add attributes to $node.

$node = Apply($op,@args);

Create a new XMApp node representing the application of the node $op to the
nodes @args.

$node = ApplyDelimited($op,@stuff);

Create a new XMApp node representing the application of the node $op to the
arguments found in @stuff. @stuff are delimited arguments in the sense that
the leading and trailing nodes should represent open and close delimiters and the
arguments are seperated by punctuation nodes. The text of these delimiters and
punctuation are used to annotate the operator node with argopen, argclose
and separator attributes.

http://search.cpan.org/search?query=Parse::RecDescent&mode=module

108 APPENDIX C. MODULES

$node = recApply(@ops,$arg);

Given a sequence of operators and an argument, forms the nested application
op(op(...(arg)))>.

$node = InvisibleTimes;

Creates an invisible times operator.

$boole = isMatchingClose($open,$close);

Checks whether $open and $close form a ‘normal’ pair of delimiters, or if
either is ”.”.

$node = Fence(@stuff);

Given a delimited sequence of nodes, starting and ending with open/close de-
limiters, and with intermediate nodes separated by punctuation or such, attempt
to guess what type of thing is represented such as a set, absolute value, interval,
and so on. If nothing specific is recognized, creates the application of FENCED
to the arguments.

This would be a good candidate for customization!

$node = NewFormulae(@stuff);

Given a set of formulas, construct a Formulae application, if there are more
than one, else just return the first.

$node = NewList(@stuff);

Given a set of expressions, construct a list application, if there are more than
one, else just return the first.

$node = LeftRec($arg1,@more);

Given an expr followed by repeated (op expr), compose the left recursive tree.
For example a + b + c - d would give (- (+ a b c) d)>

Problem($text);

Warn of a potential math parsing problem.

MaybeFunction($token);

Note the possible use of $token as a function, which may cause incorrect pars-
ing. This is used to generate warning messages.

109

LaTeXML::Bib

Implements a BibTeX parser for LaTeXML.

Description
LaTeXML::Bib serves as a low-level parser of BibTeX database files. It parses and
stores a LaTeXML::Bib::BibEntry for each entry into the current STATE. Bib-
TeX stringmacros are substituted into the field values, but no other processing of the
data is done. See LaTeXML::Package::BibTeX.pool.ltxml for how further
processing is carried out, and can be customized.

Creating a Bib

my $bib = LaTeXML::Bib->newFromFile($bibname);

Creates a LaTeXML::Bib object representing a bibliography from a BibTeX
database file.

my $bib = LaTeXML::Bib->newFromString($string);

Creates a LaTeXML::Bib object representing a bibliography from a string con-
taining the BibTeX data.

Methods

$string = $bib->toTeX;

Returns a string containing the TeX code to be digested by a LaTeXML object to
process the bibliography. The string contains all @PREAMBLE data and invoca-
tions of \\ProcessBibTeXEntry{$key} for each bibliographic entry. The
$key can be used to lookup the data from $STATE as LookupValue(’BIBITEM@’.$key).
See BibTeX.pool for how the processing is carried out.

BibEntry objects

The representation of a BibTeX entry.

$type = $bibentry->getType;

Returns a string naming the entry type of the entry (No aliasing is done here).

$key = $bibentry->getKey;

Returns the bibliographic key for the entry.

@fields = $bibentry->getFields;

Returns a list of pairs [$name,$value] representing all fields, in the order
defined, for the entry. Both the $name and $value are strings. Field names
may be repeated, if they are in the bibliography.

110 APPENDIX C. MODULES

$value = $bibentry->getField($name);

Returns the value (or undef) associated with the the given field name. If the
field was repeated in the bibliography, only the last one is returned.

Appendix D

Utility Module Documentation

LaTeXML::Util::Pathname

Portable pathname and file-system utilities

Description
This module combines the functionality File::Spec and File::Basename to
give a consistent set of filename utilties for LaTeXML. A pathname is represented by
a simple string.

Pathname Manipulations

$path = pathname make(%peices);

Constructs a pathname from the keywords in pieces dir : directory name : the
filename (possibly with extension) type : the filename extension

($dir,$name,$type) = pathname split($path);

Splits the pathname $path into the components: directory, name and type.

$path = pathname canonical($path);

Canonicallizes the pathname $path by simplifying repeated slashes, dots rep-
resenting the current or parent directory, etc.

$dir = pathname directory($path);

Returns the directory component of the pathname $path.

$name = pathname name($path);

Returns the name component of the pathname $path.

$type = pathname type($path);

Returns the type component of the pathname $path.

111

http://search.cpan.org/search?query=File::Spec&mode=module
http://search.cpan.org/search?query=File::Basename&mode=module

112 APPENDIX D. UTILITY MODULES

$path = pathname concat($dir,$file);

Returns the pathname resulting from concatenating the directory $dir and file-
name $file.

$boole = pathname is absolute($path);

Returns whether the pathname $path appears to be an absolute pathname.

$path = pathname relative($path,$base);

Returns the path to file $path relative to the directory $base.

$path = pathname absolute($path,$base);

Returns the absolute pathname resulting from interpretting $path relative to the
directory $base. If $path is already absolute, it is returned unchanged.

File System Operations

$modtime = pathname timestamp($path);

Returns the modification time of the file named by $path, or undef if the file
does not exist.

$path = pathname cwd();

Returns the current working directory.

$dir = pathname mkdir($dir);

Creates the directory $dir and all missing ancestors. It returns $dir if suc-
cessful, else undef.

$dest = pathname copy($source,$dest);

Copies the file $source to $dest if needed; ie. if $dest is missing or older
than $source. It preserves the timestamp of $source.

$path = pathname find($name,%options);

Finds the first file named $name that exists and that matches the specification in
the keywords %options. An absolute pathname is returned.

If $name is not already an absolute pathname, then the option paths deter-
mines directories to recursively search. It should be a list of pathnames, any
relative paths are interpreted relative to the current directory. If paths is omit-
ted, then the current directory is searched.

If the option installation subdir is given, it indicates, in addition to the
above, a directory relative to the LaTeXML installation directory to search. This
allows files included with the distribution to be found.

The types option specifies a list of filetypes to search for. If not supplied, then
the filename must match exactly.

@paths = pathname findall($name,%options);

Like pathname find, but returns all matching paths that exist.

113

LaTeXML::Util::KeyVal

Support for keyvals

Description
Provides a parser and representation of keyval pairs LaTeXML::KeyVal represents
parameters handled by LaTeX’s keyval package.

Declarations

DefKeyVal($keyset,$key,$type);

Defines the type of value expected for the key $key when parsed in part of a
KeyVal using $keyset. $type would be something like ’any’ or ’Number’,
but I’m still working on this.

Accessors

KeyVal($arg,$key)

This is useful within constructors to access the value associated with $key in
the argument $arg.

KeyVals($arg)

This is useful within constructors to extract all keyvalue pairs to assign all at-
tributes.

KeyVal Methods

$value = $keyval->getValue($key);

Return the value associated with $key in the $keyval.

@keyvals = $keyval->getKeyVals;

Return the hash reference containing the keys and values bound in the $keyval.
Note that will only contain the last value for a given key, if they were repeated.

@keyvals = $keyval->getPairs;

Return the alternating keys and values bound in the $keyval. Note that this
may contain multiple entries for a given key, if they were repeated.

$keyval->digestValues;

Return a new LaTeXML::KeyVals object with all values digested as appro-
priate.

114 APPENDIX D. UTILITY MODULES

Appendix E

Postprocessing Module
Documentation

LaTeXML::Post
LaTeXML::Post is the driver for various postprocessing operations. It has a compli-
cated set of options that I’ll document shortly.

115

116 APPENDIX E. POSTPROCESSING MODULES

Appendix F

LATEXML Schema

The document type used by LATEXML is modular in the sense that it is composed of
several modules that define different sets of elements related to, eg., inline content,
block content, math and high-level document structure. This allows the possibility of
mixing models or extension by predefining certain parameter entities.

Module LaTeXML
Module LaTeXML-common included.

Module LaTeXML-inline included.

Module LaTeXML-block included.

Module LaTeXML-para included.

Module LaTeXML-math included.

Module LaTeXML-tabular included.

Module LaTeXML-picture included.

Module LaTeXML-structure included.

Module LaTeXML-bib included.

Pattern Inline.model Combined model for inline content.

Content: (text | Inline.class | Misc.class | Meta.class)*

Used by: acknowledgements, acronym, anchor, bib-date,
bib-edition, bib-extract, bib-identifier, bib-key,
bib-language, bib-links, bib-note, bib-organization,
bib-part, bib-place, bib-publisher, bib-review,
bib-status, bib-subtitle, bib-title, bib-type,

117

118 APPENDIX F. SCHEMA

bib-url, bibblock, bibref, bibtag, block, caption, cite,
classification, constraint, contact, date, emph,
givenname, indexphrase, indexrefs, keywords, lineage, p,
personname, quote, ref, subtitle, surname, tag, text,
title, toccaption, toctitle, verbatim

Pattern Block.model Combined model for physical block-level content.

Content: (Block.class | Misc.class | Meta.class)*

Used by: abstract, figure, inline-block, listing,
listingblock, para, table

Pattern Flow.model Combined model for general flow containing both inline
and block level content.

Content: (text | Inline.class | Block.class | Misc.class
| Meta.class)*

Used by: note, td

Pattern Para.model Combined model for logical block-level context.

Content: (Para.class | Meta.class)*

Used by: appendix.body.class, bibliography.body.class,
chapter.body.class, document.body.class,
index.body.class, paragraph.body.class,
part.body.class, section.body.class,
subparagraph.body.class, subsection.body.class,
subsubsection.body.class, inline-para, item, proof,
theorem

Start == document

Module LaTeXML-common
Pattern Inline.class All strictly inline elements.

Expansion: (text | emph | acronym | rule | anchor | ref
| cite | bibref | Math)

Used by: Flow.model, Inline.model, XMText, clippath, g,
picture

Pattern Block.class All ‘physical’ block elements. A physical block is
typically displayed as a block, but may not constitute a complete logical unit.

Expansion: (p | equation | equationgroup | quote | block
| listingblock | itemize | enumerate | description)

Used by: Block.model, Flow.model, titlepage

119

Pattern Misc.class Additional miscellaneous elements that can appear in both
inline and block contexts.

Expansion: (inline-block | verbatim | break | graphics
| inline-para | tabular | picture)

Used by: Block.model, Flow.model, Inline.model, XMText,
clippath, creator, g, picture

Pattern Para.class All logical block level elements. A logical block typically
contains one or more physical block elements. For example, a common
situation might be p,equation,p, where the entire sequence comprises a
single sentence.

Expansion: (para | theorem | proof | figure | table
| listing)

Used by: BackMatter.class, Para.model

Pattern Meta.class All metadata elements, typically representing hidden data.

Expansion: (note | indexmark | ERROR)

Used by: BackMatter.class, Block.model, Flow.model,
Inline.model, Para.model, clippath, document,
equation, equationgroup, g, picture

Pattern Length.type The type for attributes specifying a length. Should be a
number followed by a length, typically px. NOTE: To be narrowed later.

Content: text

Used by: Positionable.attributes, tabular, td

Pattern Color.type The type for attributes specifying a color. NOTE: To be
narrowed later.

Content: text

Pattern Common.attributes Attributes shared by ALL elements.

Attribute class = NMTOKENS
a space separated list of tokens, as in CSS. The class can be used to add
differentiate different instances of elements without introducing new
element declarations. However, this generally shouldn’t be used for deep
semantic distinctions. This attribute is carried over to HTML and can be
used for CSS selection. [Note that the default XSLT stylesheets for html
and xhtml add the latexml element names to the class of html elements for
more convenience in using CSS.]

120 APPENDIX F. SCHEMA

Used by: Sectional.attributes, ERROR, Math, MathBranch,
MathFork, XMApp, XMArg, XMArray, XMCell, XMDual, XMHint,
XMRef, XMRow, XMText, XMTok, XMWrap, XMath, abstract,
acknowledgements, acronym, anchor, arc, bezier,
bib-date, bib-edition, bib-extract, bib-identifier,
bib-key, bib-language, bib-links, bib-name, bib-note,
bib-organization, bib-part, bib-place, bib-publisher,
bib-related, bib-review, bib-status, bib-subtitle,
bib-title, bib-type, bib-url, bibentry, bibitem,
biblist, bibref, block, break, caption, circle, cite,
classification, clip, clippath, contact, creator, curve,
date, description, dots, ellipse, emph, enumerate,
equation, equationgroup, figure, g, graphics, grid,
indexentry, indexlist, indexmark, indexphrase,
indexrefs, inline-block, inline-para, item, itemize,
keywords, line, listing, listingblock, note, p, para,
parabola, path, personname, picture, polygon, proof,
quote, rect, ref, rule, subtitle, table, tabular, tag,
tbody, td, text, tfoot, thead, theorem, title, toccaption,
toctitle, tr, verbatim, wedge

Pattern ID.attributes Attributes for elements that can be cross-referenced
from inside or outside the document.

Attribute xml:id = ID
the unique identifier of the element, usually generated automatically by
the latexml.

Used by: Labelled.attributes, Math, XMApp, XMArg, XMArray,
XMDual, XMHint, XMRef, XMText, XMTok, XMWrap, anchor,
bibentry, bibitem, description, enumerate, indexentry,
indexlist, itemize, para

Pattern IDREF.attributes Attributes for elements that can cross-reference
other elements.

Attribute idref = IDREF
the identifier of the referred-to element.

Used by: XMRef, bibref, ref

Pattern Labelled.attributes Attributes for elements that can be labelled
from within LaTeX.

Includes: ID.attributes

Attribute labels = text
Records the various labels that LaTeX uses for crossreferencing. (note that
\label can associate more than one label with an object!) It consists of

121

space separated labels for the element. The \label macro provides the
label prefixed by LABEL:; Spaces in a label are replaced by underscore.
Other mechanisms (like acro?) might use other prefixes (but ID: is
reserved!)

Attribute refnum = text
the reference number (ie. section number, equation number, etc) of the
object.

Used by: Sectional.attributes, equation, equationgroup,
figure, item, listing, listingblock, proof, table,
theorem

Pattern Positionable.attributes Attributes shared by low-level, generic
inline and block elements that can be sized or shifted.

Attribute width = Length.type

the desired width of the box

Attribute height = Length.type

the desired height of the box

Attribute depth = Length.type

the desired depth of the box

Attribute pad-width = Length.type

extra width beyond the boxes natural size.

Attribute pad-height = Length.type

extra height beyond the boxes natural size.

Attribute xoffset = Length.type

horizontal shift the position of the box.

Attribute yoffset = Length.type

vertical shift the position of the box.

Attribute align = (left | center | right | justified)
alignment of material within the box.

Attribute vattach = (top | middle | bottom)
specifies which line of the box is aligned to the baseline of the containing
object.

Used by: block, inline-block, inline-para, rule, text

Pattern Imageable.attributes Attributes for elements that may be
converted to image form during postprocessing, such as math, graphics,
pictures, etc.

Attribute imagesrc = anyURI
the file, possibly generated from other data.

122 APPENDIX F. SCHEMA

Attribute imagewidth = nonNegativeInteger
the width in pixels of imagesrc.

Attribute imageheight = nonNegativeInteger
the height in pixels of imagesrc.

Attribute description = text
a description of the image

Used by: Math, graphics, picture

Module LaTeXML-inline
Add to Inline.class The inline module defines basic inline elements used

throughout

|= (text | emph | acronym | rule | anchor | ref | cite
| bibref)

Add to Meta.class Additionally, it defines these meta elements. These are
generally hidden, and can appear in inline and block contexts.

|= (note | indexmark | ERROR)

Element text General container for styled text. Attributes cover a variety of
styling and position shifting properties.

Includes: Common.attributes, Positionable.attributes

Attribute font = text
Indicates the font to use. It consists of a space separated sequence of
values representing the family (serif, sansserif, math,
typewriter, caligraphic, fraktur, script, . . .), series
(medium, bold, . . .), and shape (upright, italic, slanted,
smallcaps, . . .). Only the values differing from the current context are
given. Each component is open-ended, for extensibility; it is thus unclear
whether unknown values specify family, series or shape. In
postprocessing, these values are carried to the class attribute, and can
thus be effected by CSS.

Attribute size = (Huge | huge | LARGE | Large | large | normal
| small | footnote | tiny | text)
Indicates the text size to use. The values are modeled after the more
abstract LATEX font size switches, rather than point-sizes. The values are
open-ended for extensibility; In postprocessing, these values are carried to
the class attribute, and can thus be effected by CSS.

Attribute color = text
the color to use; any CSS compatible color specification. In
postprocessing, these values are carried to the class attribute, and can
thus be effected by CSS.

123

Attribute framed = (rectangle | underline | text)
the kind of frame or outline for the text.

Content: Inline.model

Used by: Inline.class, equation

Element emph Emphasized text.

Includes: Common.attributes

Content: Inline.model

Used by: Inline.class

Element acronym Represents an acronym.

Includes: Common.attributes

Attribute name = text
should be used to indicate the expansion of the acronym.

Content: Inline.model

Used by: Inline.class

Element rule A Rule.

Includes: Common.attributes, Positionable.attributes

Content: empty

Used by: Inline.class

Element ref A hyperlink reference to some other object. When converted to
HTML, the content would be the content of the anchor. The destination can be
specified by one of the attributes labelref, idref or href; Missing fields
will usually be filled in during postprocessing, based on data extracted from the
document(s).

Includes: Common.attributes, IDREF.attributes

Attribute labelref = text
reference to a LaTeX labelled object; See the labels attribute of
Labelled.attributes.

Attribute href = text
reference to an arbitrary url.

Attribute show = text
a pattern encoding how the text content should be filled in during
postprocessing, if it is empty. It consists of the words type (standing for
the object type, eg. Ch.), refnum and title mixed with arbitrary
characters. The It can also be fulltitle, which indicates the title with
prefix and type if section numbering is enabled.

124 APPENDIX F. SCHEMA

Attribute title = text
gives a longer form description of the target, this would typically appear
as a tooltip in HTML. Typically filled in by postprocessor.

Content: Inline.model

Used by: Inline.class

Element anchor Inline anchor.

Includes: Common.attributes, ID.attributes

Content: Inline.model

Used by: Inline.class

Element cite A container for a bibliographic citation. The model is inline to
allow arbitrary comments before and after the expected bibref(s) which are
the specific citation.

Includes: Common.attributes

Content: Inline.model

Used by: Inline.class

Element bibref A bibliographic citation refering to a specific bibliographic
item.

Includes: Common.attributes, IDREF.attributes

Attribute bibrefs = text
a comma separated list of bibliographic keys. (See the key attribute of
bibitem and bibentry)

Attribute show = text
a pattern encoding how the text content (of an empty bibref) will be filled
in. Consists of strings author, fullauthor, year, number and
title (to be replaced by data from the bibliographic item) mixed with
arbitrary characters.

Attribute separator = text
separator between formatted references

Attribute yyseparator = text
separator between formatted years when duplicate authors are combined.

Content: Inline.model

Used by: Inline.class

Element note Metadata that covers several ‘out of band’ annotations. It’s content
allows both inline and block-level content.

Includes: Common.attributes

125

Attribute mark = text
indicates the desired visible marker to be linked to the note.

Content: Flow.model

Used by: Meta.class

Element ERROR error object for undefined control sequences, or whatever

Includes: Common.attributes

Content: text*

Used by: Meta.class

Element indexmark Metadata to record an indexing position. The content is a
sequence of indexphrase, each representing a level in a multilevel indexing
entry.

Includes: Common.attributes

Attribute see also = text
a flattened form (like key) of another indexmark, used to
crossreference.

Attribute style = text
NOTE: describe this.

Content: indexphrase*

Used by: Meta.class

Element indexphrase A phrase within an indexmark

Includes: Common.attributes

Attribute key = text
a flattened form of the phrase for generating an ID.

Content: Inline.model

Used by: indexentry, indexmark

Module LaTeXML-block
Add to Block.class The block module defines the following ‘physical’ block

elements.

|= (p | equation | equationgroup | quote | block
| listingblock | itemize | enumerate | description)

Add to Misc.class Additionally, it defines these miscellaneous elements that
can appear in both inline and block contexts.

|= (inline-block | verbatim | break | graphics)

126 APPENDIX F. SCHEMA

Pattern EquationMeta.class Additional Metadata that can be present in
equations.

Content: constraint

Used by: equation, equationgroup

Element p A physical paragraph.

Includes: Common.attributes

Content: Inline.model

Used by: Block.class

Element constraint A constraint upon an equation.

Attribute hidden = boolean

Content: Inline.model

Used by: EquationMeta.class

Element equation An Equation. The model is just Inline which includes Math,
the main expected ingredient. However, other things can end up in display
math, too, so we use Inline. Note that tabular is here only because it’s a
common, if misguided, idiom; the processor will lift such elements out of math,
when possible

Includes: Common.attributes, Labelled.attributes

Content: (Math | MathFork | text | tabular | Meta.class
| EquationMeta.class)*

Used by: Block.class, equationgroup

Element equationgroup A group of equations, perhaps aligned (Though this
is nowhere recorded).

Includes: Common.attributes, Labelled.attributes

Content: (equationgroup | equation | block | Meta.class
| EquationMeta.class)*

Used by: Block.class, equationgroup

Element MathFork A wrapper for Math that provides alternative, but typically
less semantically meaningful, formatted representations. The first child is the
meaningful form, the extra children provide formatted forms, for example being
table rows or cells arising from an eqnarray.

Includes: Common.attributes

Content: Math, MathBranch*

Used by: equation

127

Element MathBranch A container for an alternatively formatted math
representation.

Includes: Common.attributes

Attribute format = text

Content: (Math | tr | td)*

Used by: MathFork

Element quote A quotation.

Includes: Common.attributes

Content: Inline.model

Used by: Block.class

Element block A generic block (fallback).

Includes: Common.attributes, Positionable.attributes

Content: Inline.model

Used by: Block.class, equationgroup

Element listingblock An in-block Listing, without caption

Includes: Common.attributes, Labelled.attributes

Content: Block.model*

Used by: Block.class

Element break A forced line break.

Includes: Common.attributes

Content: empty

Used by: Misc.class

Element inline-block An inline block. Actually, can appear in inline or
block mode, but typesets its contents as a block.

Includes: Common.attributes, Positionable.attributes

Content: Block.model

Used by: Misc.class

Element verbatim Verbatim content

Includes: Common.attributes

Attribute font = text
the font to use; generally typewriter.

Content: Inline.model

128 APPENDIX F. SCHEMA

Used by: Misc.class

Element itemize An itemized list.

Includes: Common.attributes, ID.attributes
Content: item*
Used by: Block.class

Element enumerate An enumerated list.

Includes: Common.attributes, ID.attributes
Content: item*
Used by: Block.class

Element description A description list. The items within are expected to
have a tag which represents the term being described in each item.

Includes: Common.attributes, ID.attributes
Content: item*
Used by: Block.class

Element item An item within a list.

Includes: Common.attributes, Labelled.attributes
Content: tag?, Para.model
Used by: description, enumerate, itemize

Element tag A tag within an item indicating the term or bullet for a given item.

Includes: Common.attributes

Attribute open = text
specifies an open delimiters used to display the tag.

Attribute close = text
specifies an close delimiters used to display the tag.

Content: Inline.model

Used by: item

Element graphics A graphical insertion of an external file.

Includes: Common.attributes, Imageable.attributes
Attribute graphic = text

the path to the graphics file
Attribute options = text

an encoding of the scaling and positioning options to be used in
processing the graphic.

Content: empty
Used by: Misc.class

129

Module LaTeXML-para
Add to Para.class This module defines the following ‘logical’ block elements.

|= (para | theorem | proof | figure | table | listing)

Add to Misc.class Additionally, it defines these miscellaneous elements that
can appear in both inline and block contexts.

|= inline-para

Element para A Logical paragraph. It has an id, but not a label.

Includes: Common.attributes, ID.attributes

Content: Block.model

Used by: Para.class

Element inline-para An inline para. Actually, can appear in inline or block
mode, but typesets its contents as para.

Includes: Common.attributes, Positionable.attributes

Content: Para.model

Used by: Misc.class

Element theorem A theorem or similar object. The class attribute can be used
to distinguish different kinds of theorem.

Includes: Common.attributes, Labelled.attributes

Content: title?, Para.model

Used by: Para.class

Element proof A proof or similar object. The class attribute can be used to
distinguish different kinds of proof.

Includes: Common.attributes, Labelled.attributes

Content: title?, Para.model

Used by: Para.class

Pattern Caption.class These are the additional elements representing figure
and table captions. NOTE: Could title sensibly be reused here, instead? Or,
should caption be used for theorem and proof?

Content: (caption | toccaption)

Used by: figure, listing, table

Element figure A figure, possibly captioned.

Includes: Common.attributes, Labelled.attributes

130 APPENDIX F. SCHEMA

Attribute placement = text
the floating placement parameter that determines where the object is
displayed.

Content: (Block.model | Caption.class)*

Used by: Para.class

Element table A Table, possibly captioned. This is not necessarily a tabular.

Includes: Common.attributes, Labelled.attributes

Attribute placement = text
the floating placement parameter that determines where the object is
displayed.

Content: (Block.model | Caption.class)*

Used by: Para.class

Element listing A Listing, possibly captioned.

Includes: Common.attributes, Labelled.attributes

Attribute placement = text
the floating placement parameter that determines where the object is
displayed.

Content: (Block.model | Caption.class)*

Used by: Para.class

Element caption A caption for a table or figure.

Includes: Common.attributes

Content: Inline.model

Used by: Caption.class

Element toccaption A short form of table or figure caption, used for
lists of figures or similar.

Includes: Common.attributes

Content: Inline.model

Used by: Caption.class

Module LaTeXML-math
Add to Inline.class The math module defines LaTeXML’s internal

representation of mathematical content, including the basic math container
Math. This element is considered inline, as it will be contained within some
other block-level element, eg. equation for display-math.

131

|= Math

Pattern Math.class This class defines the content of the Math element.
Additionally, it could contain MathML or OpenMath, after postprocessing.

Content: XMath

Used by: Math

Pattern XMath.class These elements comprise the internal math
representation, being the content of the XMath element.

Content: (XMApp | XMTok | XMRef | XMHint | XMArg | XMWrap
| XMDual | XMText | XMArray)

Used by: XMApp, XMArg, XMCell, XMDual, XMWrap, XMath

Element Math Outer container for all math. This holds the internal XMath
representation, as well as image data and other representations.

Includes: Common.attributes, Imageable.attributes,
ID.attributes

Attribute mode = (display | inline)
display or inline mode.

Attribute tex = text
reconstruction of the TEX that generated the math.

Attribute content-tex = text
more semantic version of tex.

Attribute text = text
a textified representation of the math.

Content: Math.class*

Used by: Inline.class, MathBranch, MathFork, equation

Pattern XMath.attributes

Attribute role = text
The role that this item plays in the Grammar.

Attribute open = text
an open delimiter to enclose the object;

Attribute close = text
an close delimiter to enclose the object;

Attribute argopen = text
an open delimiter to enclose the argument list, when this token is applied
to arguments with XMApp.

132 APPENDIX F. SCHEMA

Attribute argclose = text
a close delimiter to enclose the argument list, when this token is applied to
arguments with XMApp.

Attribute separators = text
characters to separate arguments, when this token is applied to arguments
with XMApp. Can be multiple characters for different argument positions;
the last character is repeated if there aren’t enough.

Attribute punctuation = text
trailing (presumably non-semantic) punctuation.

Attribute possibleFunction = text
an annotation placed by the parser when it suspects this token may be used
as a function.

Used by: XMApp, XMArg, XMArray, XMDual, XMHint, XMRef, XMText,
XMTok, XMWrap

Element XMath Internal representation of mathematics.

Includes: Common.attributes

Content: XMath.class*

Used by: Math.class

Element XMTok General mathematical token.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Attribute name = text
The name of the token, typically the control sequence that created it.

Attribute meaning = text
A more semantic name corresponding to the intended meaning, such as
the OpenMath name.

Attribute omcd = text
The OpenMath CD for which meaning is a symbol.

Attribute style = text
Various random styling information. NOTE This needs to be made
consistent.

Attribute font = text
The font, size a used for the symbol.

Attribute size = text
The size for the symbol, not presumed to be meaningful(?)

Attribute color = text
The color (CSS format) for the symbol, not presumed to be meaningful(?)

133

Attribute scriptpos = text
An encoding of the position of this token as a sub/superscript, used to
handle aligned and nested scripts, both pre and post. It is a concatenation
of (pre—mid—post), which indicates the horizontal positioning of the
script with relation to it’s base, and a counter indicating the level. These
are used to position the scripts, and to pair up aligned sub- and
superscripts. NOTE: Clarify where this appears: token, base, script
operator, apply?

Attribute thickness = text
NOTE: How is this used?

Content: text*

Used by: XMath.class

Element XMApp Generalized application of a function, operator, whatever (the
first child) to arguments (the remaining children). The attributes are a subset of
those for XMTok.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Attribute name = text
The name of the token, typically the control sequence that created it.

Attribute meaning = text
A more semantic name corresponding to the intended meaning, such as
the OpenMath name.

Attribute scriptpos = text
An encoding of the position of this token as a sub/superscript, used to
handle aligned and nested scripts, both pre and post.

Content: XMath.class*

Used by: XMath.class

Element XMDual Parallel markup of content (first child) and presentation (second
child) of a mathematical object. Typically, the arguments are shared between
the two branches: they appear in the content branch, with id’s, and XMRef is
used in the presentation branch

Includes: Common.attributes, XMath.attributes,
ID.attributes

Content: XMath.class, XMath.class

Used by: XMath.class

Element XMHint Various spacing items, generally ignored in parsing. The
attributes are a subset of those for XMTok.

Includes: Common.attributes, XMath.attributes,
ID.attributes

134 APPENDIX F. SCHEMA

Attribute name = text

Attribute meaning = text

Attribute style = text

Content: empty

Used by: XMath.class

Element XMText Text appearing within math.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Content: (text | Inline.class | Misc.class)*

Used by: XMath.class

Element XMWrap Wrapper for a sequence of tokens used to assert the role of the
contents in its parent. This element generally disappears after parsing. The
attributes are a subset of those for XMTok.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Attribute name = text

Attribute meaning = text
A more semantic name corresponding to the intended meaning, such as
the OpenMath name.

Attribute style = text

Content: XMath.class*

Used by: XMath.class

Element XMArg Wrapper for an argument to a structured macro. It implies that its
content can be parsed independently of its parent, and thus generally disappears
after parsing.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Attribute rule = text

Content: XMath.class*

Used by: XMath.class

Element XMRef Structure sharing element typically used in the presentation
branch of an XMDual to refer to the arguments present in the content branch.

Includes: Common.attributes, XMath.attributes,
ID.attributes, IDREF.attributes

Content: empty

135

Used by: XMath.class

Element XMArray Math Array/Alignment structure.

Includes: Common.attributes, XMath.attributes,
ID.attributes

Attribute name = text

Attribute meaning = text

Attribute style = text

Attribute vattach = (top | bottom)

Attribute width = text

Content: XMRow*

Used by: XMath.class

Element XMRow A row in a math alignment.

Includes: Common.attributes

Content: XMCell*

Used by: XMArray

Element XMCell A cell in a row of a math alignment.

Includes: Common.attributes

Attribute colspan = nonNegativeInteger
indicates how many columns this cell spans or covers.

Attribute rowpan = nonNegativeInteger
indicates how many rows this cell spans or covers.

Attribute align = text
specifies the alignment of the content.

Attribute width = text
specifies the desired width for the column.

Attribute border = text
records a sequence of t or tt, r or rr, b or bb and l or ll for borders or
doubled borders on any side of the cell.

Attribute thead = boolean
whether this cell corresponds to a table head or foot.

Content: XMath.class*

Used by: XMRow

136 APPENDIX F. SCHEMA

Module LaTeXML-tabular
Add to Misc.class This module defines the basic tabular, or alignment,

structure. It is roughly parallel to the HTML model.

|= tabular

Element tabular An alignment structure corresponding to tabular or various
similar forms. The model is basically a copy of HTML4’s table.

Includes: Common.attributes

Attribute vattach = (top | middle | bottom)
which row’s baseline aligns with the container’s baseline.

Attribute width = Length.type

the desired width of the tabular.

Content: (thead | tfoot | tbody | tr)*

Used by: Misc.class, equation

Element thead A container for a set of rows that correspond to the header of the
tabular.

Includes: Common.attributes

Content: tr*

Used by: tabular

Element tfoot A container for a set of rows that correspond to the footer of the
tabular.

Includes: Common.attributes

Content: tr*

Used by: tabular

Element tbody A container for a set of rows corresponding to the body of the
tabular.

Includes: Common.attributes

Content: tr*

Used by: tabular

Element tr A row of a tabular.

Includes: Common.attributes

Content: td*

Used by: MathBranch, tabular, tbody, tfoot, thead

Element td A cell in a row of a tabular.

137

Includes: Common.attributes

Attribute colspan = nonNegativeInteger
indicates how many columns this cell spans or covers.

Attribute rowspan = nonNegativeInteger
indicates how many rows this cell spans or covers.

Attribute align = text
specifies the alignment of the content.

Attribute width = Length.type

specifies the desired width for the column.

Attribute border = text
records a sequence of t or tt, r or rr, b or bb and l or ll for borders or
doubled borders on any side of the cell.

Attribute thead = boolean
whether this cell corresponds to a table head or foot.

Content: Flow.model

Used by: MathBranch, tr

Module LaTeXML-picture
Add to Misc.class This module defines a picture environment, roughly a

subset of SVG. NOTE: Consider whether it is sensible to drop this and
incorporate SVG itself.

|= picture

Pattern Picture.class

Content: (g | rect | line | circle | path | arc | wedge
| ellipse | polygon | bezier | parabola | curve | dots
| grid | clip)

Used by: clippath, g, picture

Pattern Picture.attributes These attributes correspond roughly to SVG,
but need documentation.

Attribute x = text

Attribute y = text

Attribute r = text

Attribute rx = text

Attribute ry = text

Attribute width = text

138 APPENDIX F. SCHEMA

Attribute height = text

Attribute fill = text

Attribute stroke = text

Attribute stroke-width = text

Attribute stroke-dasharray = text

Attribute transform = text

Attribute terminators = text

Attribute arrowlength = text

Attribute points = text

Attribute showpoints = text

Attribute displayedpoints = text

Attribute arc = text

Attribute angle1 = text

Attribute angle2 = text

Attribute arcsepA = text

Attribute arcsepB = text

Attribute curvature = text

Used by: arc, bezier, circle, clip, clippath, curve, dots,
ellipse, g, grid, line, parabola, path, picture, polygon,
rect, wedge

Pattern PictureGroup.attributes These attributes correspond roughly to
SVG, but need documentation.

Attribute pos = text

Attribute framed = boolean

Attribute frametype = (rect | circle | oval)

Attribute fillframe = boolean

Attribute boxsep = text

Attribute shadowbox = boolean

Attribute doubleline = boolean

Used by: g

Element picture A picture environment.

Includes: Common.attributes, Picture.attributes,
Imageable.attributes

Attribute clip = boolean

Attribute baseline = text

139

Attribute unitlength = text

Attribute xunitlength = text

Attribute yunitlength = text

Attribute tex = text

Attribute content-tex = text

Content: (Picture.class | Inline.class | Misc.class
| Meta.class)*

Used by: Misc.class

Element g A graphical grouping; the content is inherits by the transformations,
positioning and other properties.

Includes: Common.attributes, Picture.attributes,
PictureGroup.attributes

Content: (Picture.class | Inline.class | Misc.class
| Meta.class)*

Used by: Picture.class

Element rect A rectangle within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element line A line within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element polygon A polygon within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element wedge A wedge within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element arc An arc within a picture.

Includes: Common.attributes, Picture.attributes

140 APPENDIX F. SCHEMA

Content: empty

Used by: Picture.class

Element circle A circle within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element ellipse An ellipse within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element path A path within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element bezier A bezier curve within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element curve A curve within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element parabola A parabola curve within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element dots A sequence of dots (?) within a picture.

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element grid A grid within a picture.

141

Includes: Common.attributes, Picture.attributes

Content: empty

Used by: Picture.class

Element clip Establishes a clipping region within a picture.

Includes: Common.attributes, Picture.attributes

Content: clippath*

Used by: Picture.class

Element clippath Establishes a clipping region within a picture.

Includes: Common.attributes, Picture.attributes

Content: (Picture.class | Inline.class | Misc.class
| Meta.class)*

Used by: clip

Module LaTeXML-structure
Element document The document root.

Includes: Sectional.attributes

Content: (FrontMatter.class | SectionalFrontMatter.class
| Meta.class | titlepage)*, document.body.class*,
BackMatter.class*

Pattern document.body.class The content allowable as the main body of
the document.

Content: (Para.model | paragraph | subsection | section
| chapter | part)

Used by: document

Element part A part within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*, part.body.class*

Used by: document.body.class

Pattern part.body.class The content allowable as the main body of a part.

Content: (Para.model | chapter)

Used by: part

Element chapter A Chapter within a document.

142 APPENDIX F. SCHEMA

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*, chapter.body.class*

Used by: document.body.class, part.body.class

Pattern chapter.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | subparagraph | paragraph
| subsubsection | subsection | section)

Used by: chapter

Element section A Section within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*, section.body.class*

Used by: appendix.body.class, chapter.body.class,
document.body.class

Pattern section.body.class The content allowable as the main body of a
section.

Content: (Para.model | subparagraph | paragraph
| subsubsection | subsection)

Used by: section

Element appendix An Appendix within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*,
appendix.body.class*

Used by: BackMatter.class

Pattern appendix.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | subparagraph | paragraph
| subsubsection | subsection | section)

Used by: appendix

Element subsection A Subsection within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*,
subsection.body.class*

Used by: appendix.body.class, chapter.body.class,
document.body.class, section.body.class

143

Pattern subsection.body.class The content allowable as the main body
of a chapter.

Content: (Para.model | subparagraph | paragraph
| subsubsection)

Used by: subsection

Element subsubsection A Subsubsection within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*,
subsubsection.body.class*

Used by: appendix.body.class, chapter.body.class,
section.body.class, subsection.body.class

Pattern subsubsection.body.class The content allowable as the main
body of a chapter.

Content: (Para.model | subparagraph | paragraph)

Used by: subsubsection

Element paragraph A Paragraph within a document. This corresponds to a
‘formal’ marked, possibly labelled LaTeX Paragraph, in distinction from an
unlabelled logical paragraph.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*,
paragraph.body.class*

Used by: appendix.body.class, chapter.body.class,
document.body.class, section.body.class,
subsection.body.class, subsubsection.body.class

Pattern paragraph.body.class The content allowable as the main body of
a chapter.

Content: (Para.model | subparagraph)

Used by: paragraph

Element subparagraph A Subparagraph within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*,
subparagraph.body.class*

Used by: appendix.body.class, chapter.body.class,
paragraph.body.class, section.body.class,
subsection.body.class, subsubsection.body.class

144 APPENDIX F. SCHEMA

Pattern subparagraph.body.class The content allowable as the main
body of a chapter.

Content: Para.model

Used by: subparagraph

Element bibliography A Bibliography within a document.

Includes: Sectional.attributes

Attribute files = text
the list of bib files used to create the bibliograph.

Content: FrontMatter.class*, SectionalFrontMatter.class*,
bibliography.body.class*

Used by: BackMatter.class

Pattern bibliography.body.class The content allowable as the main
body of a chapter.

Content: (Para.model | biblist)

Used by: bibliography

Element index An Index within a document.

Includes: Sectional.attributes

Content: SectionalFrontMatter.class*, index.body.class*

Used by: BackMatter.class

Pattern index.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | indexlist)

Used by: index

Element indexlist A heirarchical index generated. Typically generated during
postprocessing from the collection of indexmark in the document (or
document collection).

Includes: Common.attributes, ID.attributes

Content: indexentry*

Used by: index.body.class, indexentry

Element indexentry An entry in an indexlist consisting of a phrase,
references to points in the document where the phrase was found, and possibly
a nested indexlist represented index levels below this one.

Includes: Common.attributes, ID.attributes

Content: indexphrase, indexrefs?, indexlist?

145

Used by: indexlist

Element indexrefs A container for the references (ref) to where an
indexphrase was encountered in the document. The model is Inline to allow
arbitrary text, in addition to the expected ref’s.

Includes: Common.attributes

Content: Inline.model

Used by: indexentry

Element title The title of a document, section or similar document structure
container.

Includes: Common.attributes

Content: Inline.model

Used by: SectionalFrontMatter.class, proof, theorem

Element toctitle The short form of a title, for use in tables of contents or
similar.

Includes: Common.attributes

Content: Inline.model

Used by: SectionalFrontMatter.class

Element subtitle A subtitle, or secondary title.

Includes: Common.attributes

Content: Inline.model

Used by: FrontMatter.class

Element personname A person’s name.

Includes: Common.attributes

Content: Inline.model

Used by: Person.class

Element creator Generalized document creator.

Includes: Common.attributes

Attribute role = (author | editor | translator | contributor
| translator | text)
indicates the role of the person in creating the docment. Commonly useful
values are specified, but is open-ended to support extension.

Content: (Person.class | Misc.class)*

Used by: SectionalFrontMatter.class

146 APPENDIX F. SCHEMA

Pattern Person.class The content allowed in authors, editors, etc.

Content: (personname | contact)

Used by: creator

Element contact Generalized contact information for a document creator. Note
that this element can be repeated to give different types of contact information
(using role) for the same creator.

Includes: Common.attributes

Attribute role = (affiliation | address | current address
| email | url | thanks | dedicatory | text)
indicates the type of contact information contained. Commonly useful
values are specified, but is open-ended to support extension.

Content: Inline.model

Used by: Person.class

Element date Generalized document date. Note that this element can be repeated
to give the dates of different events (using role) for the same document.

Includes: Common.attributes

Attribute role = (creation | conversion | posted | received
| revised | accepted | text)
indicates the relevance of the date to the document. Commonly useful
values are specified, but is open-ended to support extension.

Content: Inline.model

Used by: FrontMatter.class

Element abstract A document abstract.

Includes: Common.attributes

Content: Block.model

Used by: FrontMatter.class

Element acknowledgements Acknowledgements for the document.

Includes: Common.attributes

Content: Inline.model

Used by: BackMatter.class, FrontMatter.class

Element keywords Keywords for the document. The content is freeform.

Includes: Common.attributes

Content: Inline.model

Used by: FrontMatter.class

147

Element classification A classification of the document.

Includes: Common.attributes

Attribute scheme = text
indicates what classification scheme was used.

Content: Inline.model

Used by: FrontMatter.class

Element titlepage block of random stuff marked as a titlepage

Includes: Sectional.attributes

Content: (FrontMatter.class | SectionalFrontMatter.class
| Block.class)*

Used by: document

Pattern Sectional.attributes Attributes shared by all sectional elements

Includes: Common.attributes, Labelled.attributes

Used by: appendix, bibliography, chapter, document, index,
paragraph, part, section, subparagraph, subsection,
subsubsection, titlepage

Pattern SectionalFrontMatter.class The content allowed for the front
matter of each sectional unit, and the document.

Content: (title | toctitle | creator)

Used by: appendix, bibliography, chapter, document, index,
paragraph, part, section, subparagraph, subsection,
subsubsection, titlepage

Pattern FrontMatter.class The content allowed (in addition to
SectionalFrontMatter.class) for the front matter of a document.

Content: (subtitle | date | abstract | acknowledgements
| keywords | classification)

Used by: bibliography, document, titlepage

Pattern BackMatter.class The content allowed a the end of a document.
Note that this includes random trailing Block and Para material, to support
articles with figures and similar data appearing ‘at end’.

Content: (bibliography | appendix | index
| acknowledgements | Para.class | Meta.class)

Used by: document

148 APPENDIX F. SCHEMA

Module LaTeXML-bib
Element biblist A list of bibliographic bibentry or bibitem.

Includes: Common.attributes

Content: (bibentry | bibitem)*

Used by: bibliography.body.class

Element bibitem A formatted bibliographic item, typically as written explicit in
a LaTeX article. This has generally lost most of the semantics present in the
BibTeX data.

Includes: Common.attributes, ID.attributes

Attribute key = text
The unique key for this object; this key is referenced by the bibrefs
attribute of bibref.

Content: bibtag*, bibblock*

Used by: biblist

Element bibtag Various formatted tags for bibliographic items. Typically @role
refnum is shown in the displayed bibliography, as the beginning of the item.
Other roles (eg. number, authors, fullauthors, year, title) record formatted info
to be used for filling in citations (bibref).

Attribute role = (number | authors | fullauthors | key | year
| bibtype | title | text)

Attribute open = text
A delimiter for formatting the refnum in the bibliography

Attribute close = text
A delimiter for formatting the refnum in the bibliography

Content: Inline.model

Used by: bibitem

Element bibblock A block of data appearing within a bibitem.

Content: Inline.model

Used by: bibitem

Element bibentry Semantic representation of a bibliography entry, typically
resulting from parsing BibTeX

Includes: Common.attributes, ID.attributes

Attribute key = text
The unique key for this object; this key is referenced by the bibrefs
attribute of bibref.

149

Attribute type = bibentry.type

The type of the referenced object. The values are a superset of those types
recognized by BibTeX, but is also open-ended for extensibility.

Content: Bibentry.class*

Used by: biblist

Pattern bibentry.type

Content: (article | book | booklet | conference | inbook
| incollection | inproceedings | manual
| mastersthesis | misc | phdthesis | proceedings
| techreport | unpublished | report | thesis | website
| software | periodical | collection
| collection.article | proceedings.article | text)

Used by: bib-related, bibentry

Element bib-name Name of some participant in creating a bibliographic entry.

Includes: Common.attributes

Attribute role = (author | editor | translator | text)
The role that this participant played in creating the entry.

Content: Bibname.model

Used by: Bibentry.class

Pattern Bibname.model The content model of the bibliographic name fields
(bib-name)

Content: surname, givenname?, lineage?

Expansion: (surname, givenname?, lineage?)

Used by: bib-name

Element surname Surname of a participant (bib-name).

Content: Inline.model

Used by: Bibname.model

Element givenname Given name of a participant (bib-name).

Content: Inline.model

Used by: Bibname.model

Element lineage Lineage of a participant (bib-name), eg. Jr. or similar.

Content: Inline.model

Used by: Bibname.model

Element bib-title Title of a bibliographic entry.

150 APPENDIX F. SCHEMA

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-subtitle Subtitle of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-key Unique key of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-type Type of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-date Date of a bibliographic entry.

Includes: Common.attributes

Attribute role = (publication | copyright | text)
characterizes what happened on the given date

Content: Inline.model

Used by: Bibentry.class

Element bib-publisher Publisher of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-organization Organization responsible for a bibliographic
entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-place Location of publisher or event

Includes: Common.attributes

151

Content: Inline.model

Used by: Bibentry.class

Element bib-related A Related bibliographic object, such as the book or
journal that the current item is related to.

Includes: Common.attributes

Attribute type = bibentry.type

The type of this related entry.

Attribute role = (host | event | original | text)
How this object relates to the containing object. Particularly important is
host which indicates that the outer object is a part of this object.

Attribute bibrefs = text
If the bibrefs attribute is given, it is the key of another object in the
bibliography, and this element should be empty; otherwise the object
should be described by the content of the element.

Content: Bibentry.class*

Used by: Bibentry.class

Element bib-part Describes how the current object is related to a related
(bib-related) object, in particular page, part, volume numbers and similar.

Includes: Common.attributes

Attribute role = (pages | part | volume | issue | number
| chapter | section | paragraph | text)
indicates how the value partitions the containing object.

Content: Inline.model

Used by: Bibentry.class

Element bib-edition Edition of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-status Status of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-identifier Some form of document identfier. The content is
descriptive.

Includes: Common.attributes

152 APPENDIX F. SCHEMA

Attribute scheme = (doi | issn | isbn | mr | text)
indicates what sort of identifier it is; it is open-ended for extensibility.

Attribute id = text
the identifier.

Attribute href = text
a url to the document, if available

Content: Inline.model

Used by: Bibentry.class

Element bib-review Review of a bibliographic entry. The content is
descriptive.

Includes: Common.attributes

Attribute scheme = (doi | issn | isbn | mr | text)
indicates what sort of identifier it is; it is open-ended for extensibility.

Attribute id = text
the identifier.

Attribute href = text
a url to the review, if available

Content: Inline.model

Used by: Bibentry.class

Element bib-links Links to other things like preprints, source code, etc.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-language Language of a bibliographic entry.

Includes: Common.attributes

Content: Inline.model

Used by: Bibentry.class

Element bib-url A URL for a bibliographic entry. The content is descriptive

Includes: Common.attributes

Attribute href = text

Content: Inline.model

Used by: Bibentry.class

Element bib-extract An extract from the referenced object.

153

Includes: Common.attributes

Attribute role = (keywords | abstract | contents | text)
Classify what kind of extract

Content: Inline.model

Used by: Bibentry.class

Element bib-note Notes about a bibliographic entry.

Includes: Common.attributes

Attribute role = (annotation | publication | text)
Classify the kind of note

Content: Inline.model

Used by: Bibentry.class

Pattern Bibentry.class

Content: (bib-name | bib-title | bib-subtitle | bib-key
| bib-type | bib-date | bib-publisher
| bib-organization | bib-place | bib-part
| bib-related | bib-edition | bib-status
| bib-language | bib-url | bib-note | bib-extract
| bib-identifier | bib-review | bib-links)

Used by: bib-related, bibentry

154 APPENDIX F. SCHEMA

Appendix G

Error Codes

Warning and Error messages are printed to STDERR during the execution of latexml
and latexmlpost. As with TEX, it is not always possible to indicate where the real
underying mistake originated; sometimes it is only realized later on that some problem
has occurred, such as a missing brace. Moreover, whereas error messages from TEX
may be safely assumed to indicate errors with the source document, with LATEXML they
may also indicate LATEXML’s inability to figure out what you wanted, or simply bugs in
LATEXML, itself.

Warnings are generally informative that the generated result may not be as good as it
can be, but is most likely properly formed. A typical warning is that the math
parser failed to recognize an expression.

Errors generally indicate a more serious problem that is likely to lead to a malformed
result. A typical error would be an undefined control sequence. Generally, pro-
cessing continues so that you can (hopefully) solve all errors at once.

Fatals are errors so serious as to make it unlikely that processing can continue; the
system is likely to be out-of-sync, for example not knowing from which point
in the input to continue reading. A fatal error is also generated when too many
(typically 100 regular errors have been encountered.

Warning and Error messages are slightly structured to allow unattended process-
ing of documents to classify the degree of success in processing. A typical message
satisfies the following regular expression:

(Warning|Error|Fatal)(:\S*)\s+(.*)

The type is followed by one or more keywords separated by colons, then a space, and
a human readable error message. Generally, this line is followed by one or more lines
describing where in the source document the error occured (or was detected). For
example:

Error:undefined:\foo The control sequence \foo is undefined.

155

156 APPENDIX G. ERROR CODES

Some of the more common keywords following the message type are listed below,
where we assume that arg is the second keyword (if any).

The following errors are generally due to malformed TEX input, incomplete LATEXML
bindings, or bindings that do not properly account for the way TEX, or the macros, are
actually used.

undefined : arg indicates the undefined control sequence.

expected : arg was expected in the input but missing. The expected thing will likely
either be a control sequence or something like <variable> to indicate that a
variable was expected.

unexpected : arg was not expected to appear in the input.

missing file : the file arg could not be found. Also used when the file is otherwise
not readable or processable.

latex : An error or message generated from LATEX code.

parse : An issue parsing the mathematics.

The following errors are more likely to be due to programming errors in the LATEXML
core, or in binding files, or in the document model.

perl : A perl-level error or warning,not specifically recognized by LaTeXML, was
encountered. The second keyword will typically die, interrupt or warn.

malformed : some sort of malformed XML problem.

model : some sort of problem with the document model or schema.

misdefined : Some sort of error in the definition of arg.

internal : Something unexpected happened; most likey an internal coding error
within LATEXML.

too many : Too many error were encountered.

Should there be an additional level that identifies the processing stage? Eg. mouth,
gullet, stomach, intestine, . . . ? That might semi-automatically distinguish expected,
unexpected, malformed? Or does it?

Index

Bib (LaTeXML::)
Module Reference, 109

BibEntry objects, 109
Creating a Bib, 109
Description, 109
Methods, 109

Box (LaTeXML::)
architecture, 12
Module Reference, 87

Box Methods, 88
Common Methods, 87
Description, 87
Whatsit Methods, 88

Constructor (LaTeXML::)
architecture, 13

Definition (LaTeXML::)
architecture, 12
Module Reference, 57

Description, 57
Methods in general, 57
More about Constructors, 59
More about Primitives, 58
More about Registers, 58

Document (LaTeXML::)
architecture, 13
Module Reference, 100

Accessors, 100
Construction Methods, 101
Description, 100

Error (LaTeXML::)
Module Reference, 63

Description, 63
Functions, 63

Expandable (LaTeXML::)
architecture, 12

Font (LaTeXML::)
Module Reference, 92

Description, 92
LaTeXML::MathFont, 92

Global (LaTeXML::)
Module Reference, 60

Description, 60
Error Reporting, 62
Generic functions, 62
Global state, 60
Numbers, etc., 61
Synopsis, 60
Tokens, 60

Gullet (LaTeXML::)
architecture, 12
Module Reference, 95

Description, 95
High-level methods, 97
Low-level methods, 95
Managing Input, 95
Mid-level methods, 96

KeyVal (LaTeXML::Util::)
Module Reference, 113

Accessors, 113
Declarations, 113
Description, 113
KeyVal Methods, 113

LaTeXML
architecture, 11
Module Reference, 53

157

158 INDEX

Customization, 54
Description, 53
Methods, 53
See also, 54
Synopsis, 53

latexml
basic usage, 4
Command Reference, 37

Options & Arguments, 38
See also, 40
Synopsis, 37

latexmlmath
basic usage, 9
Command Reference, 48

BUGS, 50
Conversion Options, 48
Options & Arguments, 48
Other Options, 49
See also, 50
Synopsis, 48

latexmlpost
basic usage, 5

site building, 8
split pages, 8

Command Reference, 41
Format Options, 43
General Options, 43
Graphics Options, 47
Math Options, 46
Options & Arguments, 43
See also, 47
Site & Crossreferencing Options,

44
Source Options, 43
Synopsis, 41

List (LaTeXML::)
architecture, 12

MathParser (LaTeXML::)
architecture, 13
Module Reference, 107

Convenience functions, 107
Description, 107
Math Representation, 107
Possibile Customizations, 107

Model (LaTeXML::)

architecture, 13
Module Reference, 103

Description, 103
Document Type, 103
Model Creation, 103
Model queries, 104
Namespaces, 103
Rewrite Rules, 105
Tag Properties, 104

Mouth (LaTeXML::)
architecture, 12
Module Reference, 93

Creating Mouths, 93
Description, 93
Methods, 93

Number (LaTeXML::)
Module Reference, 90

Common methods, 90
Description, 90
Numerics methods, 91

Object (LaTeXML::)
Module Reference, 56

Description, 56
Methods, 56

Package (LaTeXML::)
Module Reference, 64

Access to State, 77
Argument Readers, 77
Class and Packages, 72
Constructors, 68
Control of Scoping, 67
Control Sequence Parameters, 65
Control Sequences, 65
Counters and IDs, 73
Description, 65
Document Model, 74
Document Rewriting, 75
Low-level Functions, 78
Macros, 67
Mid-Level support, 76
Primitives, 67
Synopsis, 64

Parameters (LaTeXML::)

INDEX 159

Module Reference, 80
Description, 80
Parameters Methods, 80

Pathname (LaTeXML::Util::)
Module Reference, 111

Description, 111
File System Operations, 112
Pathname Manipulations, 111

Post (LaTeXML::)
architecture, 14
Module Reference, 115

Primitive (LaTeXML::)
architecture, 12

Rewrite (LaTeXML::)
architecture, 13
Module Reference, 106

Description, 106
Methods, 106

State (LaTeXML::)
Module Reference, 82

Access to State and Processing, 82
Category Codes, 83
Definitions, 84
Description, 82
Named Scopes, 84
Scoping, 82
Values, 83

Stomach (LaTeXML::)
architecture, 12
Module Reference, 98

Description, 98
Digestion, 98
Grouping, 99
Modes, 99

Token (LaTeXML::)
architecture, 12
Module Reference, 85

Common methods, 85
Description, 85
Token methods, 85
Tokens methods, 85

Tokens (LaTeXML::)
architecture, 12

Whatsit (LaTeXML::)
architecture, 12

	Contents
	Introduction
	Using LaTeXML
	Conversion
	Postprocessing
	Splitting
	Sites
	Individual Formula

	Architecture
	latexml architecture
	Digestion
	Construction
	Rewriting
	MathParsing
	Serialization

	latexmlpost architecture

	Customization
	latexml Customization
	Expansion
	Digestion
	Construction
	Document Model
	Rewriting
	Packages and Options
	Miscellaneous

	latexmlpost Customization
	XSLT
	CSS

	Mathematics
	Math Details
	Internal Math Representation
	Grammatical Roles

	ToDo
	Commands
	Bindings
	Modules
	Utility Modules
	Postprocessing Modules
	Schema
	Error Codes
	Index

